-
Notifications
You must be signed in to change notification settings - Fork 0
/
06-ialeUK25-analysisSpatial.Rmd
355 lines (256 loc) · 12 KB
/
06-ialeUK25-analysisSpatial.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
# Analysis by Spatial Extent
Bar charts to examine how contributions to conferences vary by methods
```{r}
#spec(cpdata)
spatdata <- cpdata %>%
select_if(is.numeric) %>%
gather(key = Spatial, value = count, Micro:`Undefined Extent`) %>%
filter(count > 0) %>%
group_by(`Spatial`) %>%
summarise_all(sum, na.rm=T)
uspatdata <- cpdata %>%
select_if(is.numeric) %>%
gather(key = Spatial, value = count, Micro:Global) %>%
filter(count > 0) %>%
group_by(`Spatial`) %>%
summarise_all(sum, na.rm=T)
```
## Total Conference Contributions
Quick observations:
- Dominated by Local extent studies, but also many at national and regional extents
- Global and Continental (largest extent) have fewest studies (8 and 27 respectively)
```{r}
#ggplot(authCounts, aes(x=Spatial, y=count)) + geom_bar(stat="identity")
spatdata %>%
select(Spatial, count) %>%
mutate(prop = count/sum(count)) %>%
mutate(prop = round(prop,3)) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
ggplot(spatdata, aes(x=Spatial, y=count)) +
geom_bar(stat="identity") +
geom_text(aes(x=Spatial, y=max(count), label = paste0(round(100*count / sum(count),1), "%"), vjust=-0.5))
uspatdata %>%
select(Spatial, count) %>%
mutate(prop = count/sum(count)) %>%
mutate(prop = round(prop,3)) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
ggplot(uspatdata, aes(x=Spatial, y=count)) +
geom_bar(stat="identity") +
geom_text(aes(x=Spatial, y=max(count), label = paste0(round(100*count / sum(count),1), "%"), vjust=-0.5))
```
## Author Affiliation
Quick observations:
- global studies are have greater proportions of Business and NGO authorship
- all extents dominated by academic authors, except Global and National
- All authorships represented at all extents except Private (in Micro and Global) and Government (in Global)
```{r}
authCounts <- spatdata %>%
select(Spatial,Academic, Government,NGO,Business,Private) %>%
mutate(sum = rowSums(.[2:6])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -Spatial, -sum) %>%
mutate(prop = count / sum) #calculate proportion
spatdata %>%
select(Spatial,Academic, Government,NGO,Business,Private) %>%
mutate(Total = rowSums(.[2:6])) %>% #calculate total
mutate_if(is.numeric, funs(prop = ./ Total)) %>%
mutate_at(vars(ends_with("prop")), round, 3) %>%
select(-Total_prop) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
ggplot(authCounts, aes(x=Spatial, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(authCounts, aes(x=Spatial, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Landscape Type
### Using all landscape types
Quick observations:
- Global extent studies do not consider Lowland rural landscapes
```{r}
lspCounts <- spatdata %>%
select(Spatial,`Upland rural`, `Lowland rural`, Urban, Riverscape, Seascape, `Undefined LspType`,Other) %>%
mutate(sum = rowSums(.[2:8])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -Spatial, -sum) %>%
mutate(prop = count / sum) #calculate proportion
spatdata %>%
select(Spatial,`Upland rural`, `Lowland rural`, Urban, Riverscape, Seascape, `Undefined LspType`,Other) %>%
mutate(Total = rowSums(.[2:8])) %>% #calculate total
mutate_if(is.numeric, funs(prop = ./ Total)) %>%
mutate_at(vars(ends_with("prop")), round, 3) %>%
select(-Total_prop) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
ggplot(lspCounts, aes(x=Spatial, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(lspCounts, aes(x=Spatial, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
### Without 'Undefined LspType' and 'Other' landscape types
Quick observations:
- National extent studies have largest proportion of Upland Rural landscape studies
- Micro, Mini and Regional extent studies dominated by Lowland rural
- 'Undefined extent' has largest proportion of riverscape studies
```{r}
lspCounts <- spatdata %>%
select(Spatial,`Upland rural`, `Lowland rural`, Urban, Riverscape, Seascape) %>%
mutate(sum = rowSums(.[2:6])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -Spatial, -sum) %>%
mutate(prop = count / sum) #calculate proportion
spatdata %>%
select(Spatial,`Upland rural`, `Lowland rural`, Urban, Riverscape, Seascape) %>%
mutate(Total = rowSums(.[2:6])) %>% #calculate total
mutate_if(is.numeric, funs(prop = ./ Total)) %>%
mutate_at(vars(ends_with("prop")), round, 3) %>%
select(-Total_prop) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
ggplot(lspCounts, aes(x=Spatial, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(lspCounts, aes(x=Spatial, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Species
Quick observations
- Global studies are again qualitatively different from other scale studies - no amphibiams, birds, reptiles, woodland studies but largest proportions of Fish and generic Habitat studies
- Smallest extents (mini and micro) have largest proportions of Plant and Inverts studies
```{r}
speciesCounts <- spatdata %>%
select(Spatial, Mammals, Humans, Birds, Reptiles, Inverts, Plants, Amphibians, Fish, `Generic Habitat`,`Woodland Forests`) %>%
mutate(sum = rowSums(.[2:11])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -Spatial, -sum) %>%
mutate(prop = count / sum) #calculate proportion
spatdata %>%
select(Spatial, Mammals, Humans, Birds, Reptiles, Inverts, Plants, Amphibians, Fish, `Generic Habitat`,`Woodland Forests`) %>%
mutate(Total = rowSums(.[2:11])) %>% #calculate total for subsquent calcultation of proportion
mutate_if(is.numeric, funs(prop = ./ Total)) %>%
mutate_at(vars(ends_with("prop")), round, 3) %>%
select(-Total_prop) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
ggplot(speciesCounts, aes(x=Spatial, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(speciesCounts, aes(x=Spatial, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Methods
Quick observations:
- Global, Continental and Undefined Extent have the greatest proportions of Theoretical, Qualitative and Remote Sensing studies
- Smallest extents (mini and micro) have the largest proportions of Empirical studies (and local have largest absolute number)
- Regional and Local studies have largest number and proportions of GIS studies (and GIS used least at extremes of extents, i.e. mini, micro and global)
```{r}
methodsCounts <- spatdata %>%
select(Spatial, Empirical, Theoretical, Qualitative, Quantitative, GIS, `Remote sensing`) %>%
mutate(sum = rowSums(.[2:7])) %>%
gather(key = Type, value = count, -Spatial, -sum) %>%
mutate(prop = count / sum)
spatdata %>%
select(Spatial, Empirical, Theoretical, Qualitative, Quantitative, GIS, `Remote sensing`) %>%
mutate(Total = rowSums(.[2:7])) %>%
mutate_if(is.numeric, funs(prop = ./ Total)) %>%
mutate_at(vars(ends_with("prop")), round, 3) %>%
select(-Total_prop) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
ggplot(methodsCounts, aes(x=Spatial, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(methodsCounts, aes(x=Spatial, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Temporal Extent
### With undefined
Quick observations:
```{r echo=F}
temporalCounts <- spatdata %>%
select(Spatial, Hours, Days, Weeks, Months, Years, Decades, Centuries, Longer, `Undefined Temporal`
) %>%
mutate(sum = rowSums(.[2:10])) %>%
gather(key = Type, value = count, -Spatial, -sum) %>%
mutate(prop = count / sum)
spatdata %>%
select(Spatial, Hours, Days, Weeks, Months, Years, Decades, Centuries, Longer, `Undefined Temporal`
) %>%
mutate(Total = rowSums(.[2:10])) %>%
mutate_if(is.numeric, funs(prop = ./ Total)) %>%
mutate_at(vars(ends_with("prop")), round, 3) %>%
select(-Total_prop) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
ggplot(temporalCounts, aes(x=Spatial, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(temporalCounts, aes(x=Spatial, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
### Without Undefined
- Again Global is qualitatively different (only Decades and Years studies)
- Continental has nothing shorter than Years
- National and Regional extents have large proportions of Decadal studies
- Micro and Mini extents have largest proprtions of Monthly and Weekly studies
```{r echo=F}
temporalCounts <- spatdata %>%
select(Spatial, Hours, Days, Weeks, Months, Years, Decades, Centuries, Longer
) %>%
mutate(sum = rowSums(.[2:9])) %>%
gather(key = Type, value = count, -Spatial, -sum) %>%
mutate(prop = count / sum)
spatdata %>%
select(Spatial, Hours, Days, Weeks, Months, Years, Decades, Centuries, Longer
) %>%
mutate(Total = rowSums(.[2:9])) %>%
mutate_if(is.numeric, funs(prop = ./ Total)) %>%
mutate_at(vars(ends_with("prop")), round, 3) %>%
select(-Total_prop) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
ggplot(temporalCounts, aes(x=Spatial, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(temporalCounts, aes(x=Spatial, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Concepts
Quick observations:
- Global extents have largest proportions of Ecosystem Services and Climate Change studies
- Continental and National extents have largest proportions of LUCC studies
- Micro extent have largest proportion of Pattern-Process-Scale studies
```{r}
conceptCounts <- spatdata %>%
select(Spatial, `PPS of landscapes`,
`Connectivity and fragmentation`, `Scale and scaling`,`Spatial analysis and modeling`,LUCC,`History and legacy`,`Climate change interactions`,`Ecosystem services`,`Landscape sustainability`,`Accuracy and uncertainty`
) %>%
mutate(sum = rowSums(.[2:11])) %>%
gather(key = Type, value = count, -Spatial, -sum) %>%
mutate(prop = count / sum)
spatdata %>%
select(Spatial, `PPS of landscapes`,
`Connectivity and fragmentation`, `Scale and scaling`,`Spatial analysis and modeling`,LUCC,`History and legacy`,`Climate change interactions`,`Ecosystem services`,`Landscape sustainability`,`Accuracy and uncertainty`
) %>%
mutate(Total = rowSums(.[2:11])) %>%
mutate_if(is.numeric, funs(prop = ./ Total)) %>%
mutate_at(vars(ends_with("prop")), round, 3) %>%
select(-Total_prop) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
ggplot(conceptCounts, aes(x=Spatial, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(conceptCounts, aes(x=Spatial, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Other Concepts
Quick observations:
- Smallest extents (micro and mini) have smallest proportions of Socio-Economic Dimensions studies and largest proportions of Biodiversity studies
- Consistent proportions of Management and Conservation studies across all extents
```{r}
otherCounts <- spatdata %>%
select(Spatial, `Green Infrastructure`,`Planning and Architecture`,`Management and Conservation`,`Cultural Landscapes`,`Socio-economic Dimensions`,Biodiversity,`Landscape Assessment`,`Catchment Based Approach`,`Invasives Pests Diseases`
) %>%
mutate(sum = rowSums(.[2:10])) %>%
gather(key = Type, value = count, -Spatial, -sum) %>%
mutate(prop = count / sum)
spatdata %>%
select(Spatial, `Green Infrastructure`,`Planning and Architecture`,`Management and Conservation`,`Cultural Landscapes`,`Socio-economic Dimensions`,Biodiversity,`Landscape Assessment`,`Catchment Based Approach`,`Invasives Pests Diseases`
) %>%
mutate(Total = rowSums(.[2:10])) %>%
mutate_if(is.numeric, funs(prop = ./ Total)) %>%
mutate_at(vars(ends_with("prop")), round, 3) %>%
select(-Total_prop) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
ggplot(otherCounts, aes(x=Spatial, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(otherCounts, aes(x=Spatial, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```