-
Notifications
You must be signed in to change notification settings - Fork 0
/
05-ialeUK25-analysisMethods.Rmd
229 lines (150 loc) · 7.21 KB
/
05-ialeUK25-analysisMethods.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Analysis by Methods
Bar charts to examine how contributions to conferences vary by methods
```{r}
#spec(cpdata)
metdata <- cpdata %>%
select_if(is.numeric) %>%
gather(key = Method, value = count, Empirical:`Remote sensing`) %>%
filter(count > 0) %>%
group_by(`Method`) %>%
summarise_all(sum, na.rm=T)
```
## Total Conference Contributions
Quick observations:
- Empirical and Quantitative studies dominate
- little remote sensing
```{r}
metdata %>%
select(Method, count) %>%
mutate(prop = count/sum(count)) %>%
mutate(prop = round(prop,3)) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
ggplot(metdata, aes(x=Method, y=count)) +
geom_bar(stat="identity") +
geom_text(aes(x=Method, y=max(count), label = paste0(round(100*count / sum(count),1), "%"), vjust=-0.25))
```
## Author Affiliation
Quick observations:
- pretty consistent distribution of methods across affiliations
```{r}
authorCounts <- metdata %>%
select(Method,Academic, Government,NGO,Business,Private) %>%
mutate(sum = rowSums(.[2:6])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -Method, -sum) %>%
mutate(prop = count / sum) #calculate proportion
ggplot(authorCounts, aes(x=Method, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(authorCounts, aes(x=Method, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Landscape Type
### Using all landscape types
Quick observations:
- Qualitative studies are most evenly distributed across landscape types
- Theoretical studies most commonly do not define a landscape type
```{r}
lspCounts <- metdata %>%
select(Method,`Upland rural`, `Lowland rural`, Urban, Riverscape, Seascape, `Undefined LspType`,Other) %>%
mutate(sum = rowSums(.[2:8])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -Method, -sum) %>%
mutate(prop = count / sum) #calculate proportion
ggplot(lspCounts, aes(x=Method, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(lspCounts, aes(x=Method, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
### Without 'Undefined LspType' and 'Other' landscape types
Quick observations:
- This is generally less informative than with 'un-defined' (in contrast to other classifications)
- Does highlight that qualitative studies are most prevalent in seascape studies
```{r}
lspCounts <- metdata %>%
select(Method,`Upland rural`, `Lowland rural`, Urban, Riverscape, Seascape) %>%
mutate(sum = rowSums(.[2:6])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -Method, -sum) %>%
mutate(prop = count / sum) #calculate proportion
ggplot(lspCounts, aes(x=Method, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(lspCounts, aes(x=Method, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Species
Quick observations
- Qualitative studies most commonly study humans
```{r}
sppCounts <- metdata %>%
select(Method,Mammals, Humans, Birds, Reptiles, Inverts, Plants, Amphibians, Fish, `Generic Habitat`,`Woodland Forests`) %>%
mutate(sum = rowSums(.[2:11])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -Method, -sum) %>%
mutate(prop = count / sum) #calculate proportion
ggplot(sppCounts, aes(x=Method, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(sppCounts, aes(x=Method, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Spatial Extent
Quick observations:
- Theoretical studies have largely undefined extent
- No micro qualitative studies
- very few global empirical studies, and no GIS global studies
```{r}
spatialCounts <- metdata %>%
select(Method, Micro, Mini, Local, Regional, National, Continental, Global,`Undefined Extent`) %>%
mutate(sum = rowSums(.[2:9])) %>%
gather(key = Type, value = count, -Method, -sum) %>%
mutate(prop = count / sum)
ggplot(spatialCounts, aes(x=Method, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(spatialCounts, aes(x=Method, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Temporal Extent
### With undefined
Quick observations:
- Difficult to see much; examine without 'undefined'
```{r echo=F}
temporalCounts <- metdata %>%
select(Method, Hours, Days, Weeks, Months, Years, Decades, Centuries, Longer, `Undefined Temporal`
) %>%
mutate(sum = rowSums(.[2:10])) %>%
gather(key = Type, value = count, -Method, -sum) %>%
mutate(prop = count / sum)
ggplot(temporalCounts, aes(x=Method, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(temporalCounts, aes(x=Method, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
### Without Undefined
- Theoretical studies are years or longer
- Actually, vast majority of studies are months or longer (should see this when splitting by temporal extent)
```{r echo=F}
temporalCounts <- metdata %>%
select(Method, Hours, Days, Weeks, Months, Years, Decades, Centuries, Longer
) %>%
mutate(sum = rowSums(.[2:9])) %>%
gather(key = Type, value = count, -Method, -sum) %>%
mutate(prop = count / sum)
ggplot(temporalCounts, aes(x=Method, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(temporalCounts, aes(x=Method, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Concepts
Quick observations:
- Surprisingly few theoretical studies of scale and scaling?
- Relatively large number of qualitative studies are about landscape sustainability
- Relatively few empirical studies of ecosystem services
- GIS studies have largest proportion of spatial analysis and modellng (unsurprisingly)
```{r}
conceptCounts <- metdata %>%
select(Method, `PPS of landscapes`,
`Connectivity and fragmentation`, `Scale and scaling`,`Spatial analysis and modeling`,LUCC,`History and legacy`,`Climate change interactions`,`Ecosystem services`,`Landscape sustainability`,`Accuracy and uncertainty`
) %>%
mutate(sum = rowSums(.[2:11])) %>%
gather(key = Type, value = count, -Method, -sum) %>%
mutate(prop = count / sum)
ggplot(conceptCounts, aes(x=Method, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(conceptCounts, aes(x=Method, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Other Concepts
Quick observations:
- Qualitative studies have relatively low proportion of biodiversity studies, but have relatively large proportion of socio-economic and cultural
- Theoretical studies have similar distribution to qualitative slightly more biodiversity at expense of cultural
```{r}
othCCounts <- metdata %>%
select(Method, `Green Infrastructure`,`Planning and Architecture`,`Management and Conservation`,`Cultural Landscapes`,`Socio-economic Dimensions`,Biodiversity,`Landscape Assessment`,`Catchment Based Approach`,`Invasives Pests Diseases`
) %>%
mutate(sum = rowSums(.[2:10])) %>%
gather(key = Type, value = count, -Method, -sum) %>%
mutate(prop = count / sum)
ggplot(othCCounts, aes(x=Method, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(othCCounts, aes(x=Method, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```