-
Notifications
You must be signed in to change notification settings - Fork 0
/
03-ialeUK25-analysisLandscapeType.Rmd
187 lines (121 loc) · 6.27 KB
/
03-ialeUK25-analysisLandscapeType.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Analysis by Landscape Type
Bar charts to examine how contribution to conferences have changed over time.
## Total Conference Contributions
```{r}
#spec(cpdata)
lspdata <- cpdata %>%
select_if(is.numeric) %>%
gather(key = LspType, value = count, `Upland rural`:Other) %>%
filter(count > 0) %>%
group_by(`LspType`) %>%
summarise_all(sum, na.rm=T)
```
Quick observations:
- Lowland rural dominate, followed by 'undefined' and Upland rural
```{r}
lspdata %>%
select(LspType, count) %>%
mutate(prop = count/sum(count)) %>%
mutate(prop = round(prop,3)) %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
ggplot(lspdata, aes(x=LspType, y=count)) +
geom_bar(stat="identity") +
geom_text(aes(x=LspType, y=max(count), label = paste0(round(100*count / sum(count),1), "%"), vjust=-0.25))
```
## Author Affiliation
Quick observations:
- Academic are majority of all landscape types, with possible exception of Upland rural (Government?)
-
```{r}
authorCounts <- lspdata %>%
select(LspType,Academic, Government,NGO,Business,Private) %>%
mutate(sum = rowSums(.[2:6])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -LspType, -sum) %>%
mutate(prop = count / sum) #calculate proportion
ggplot(authorCounts, aes(x=LspType, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(authorCounts, aes(x=LspType, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Species
Quick observations
- Animal types quite evenly distributed across Lowland rural
- Humans are large contributor to seascape studies (possibly by absolute number as well as relative)
- Generic habitat is large contributor across all landscape types
```{r}
sppCounts <- lspdata %>%
select(LspType,Mammals, Humans, Birds, Reptiles, Inverts, Plants, Amphibians, Fish, `Generic Habitat`,`Woodland Forests`) %>%
mutate(sum = rowSums(.[2:11])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -LspType, -sum) %>%
mutate(prop = count / sum) #calculate proportion
ggplot(sppCounts, aes(x=LspType, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(sppCounts, aes(x=LspType, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Methods
Quick observations
- 'Undefined landscape' studies are largely theoretical
- Lowland rural largely studies using empirical and quantitative methods
- Seascape studies have largest proportion of qualitative methods
```{r}
methodsCounts <- lspdata %>%
select(LspType,Empirical, Theoretical, Qualitative, Quantitative, GIS, `Remote sensing`) %>%
mutate(sum = rowSums(.[2:7])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -LspType, -sum) %>%
mutate(prop = count / sum) #calculate proportion
ggplot(methodsCounts, aes(x=LspType, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(methodsCounts, aes(x=LspType, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Spatial Extent
Quick observations
- Urban landscape studies are dominated by Local scale analysis
- Upland rural have larger proportion of national studies than Lowland rural
```{r}
spatialCounts <- lspdata %>%
select(LspType,Micro, Mini, Local, Regional, National, Continental, Global,`Undefined Extent`) %>%
mutate(sum = rowSums(.[2:9])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -LspType, -sum) %>%
mutate(prop = count / sum) #calculate proportion
ggplot(spatialCounts, aes(x=LspType, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(spatialCounts, aes(x=LspType, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Temporal Extent
Quick observations
- Upland have greatest proportion of Decadal studies
- Urban have greatest proportion of Monthly studies
```{r}
temporalCounts <- lspdata %>%
select(LspType,Hours, Days, Weeks, Months, Years, Decades, Centuries, Longer, `Undefined Temporal`) %>%
mutate(sum = rowSums(.[2:10])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -LspType, -sum) %>%
mutate(prop = count / sum) #calculate proportion
ggplot(temporalCounts, aes(x=LspType, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(temporalCounts, aes(x=LspType, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Concepts
Quick observations
- Upland have greatest proportion of LUCC studies
- Seascape have greatest proportion of climate change studies
```{r}
conceptCounts <- lspdata %>%
select(`LspType`,`PPS of landscapes`,
`Connectivity and fragmentation`, `Scale and scaling`,`Spatial analysis and modeling`,LUCC,`History and legacy`,`Climate change interactions`,`Ecosystem services`,`Landscape sustainability`,`Accuracy and uncertainty`) %>%
mutate(sum = rowSums(.[2:11])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -`LspType`, -sum) %>%
mutate(prop = count / sum) #calculate proportion
ggplot(conceptCounts, aes(x=`LspType`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(conceptCounts, aes(x=`LspType`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Other Concepts
Quick observations
- Socio-economic dimensions are most widely examined in Urban landscapes and Seascapes
- Unsurprisingly, Green Infrastructure has greatest proportion in Urban landscapes and catchment-based approaches in Riverscapes
- Little study of cultural landscapes in Urban areas
```{r}
othCCounts <- lspdata %>%
select(`LspType`,`Green Infrastructure`,`Planning and Architecture`,`Management and Conservation`,`Cultural Landscapes`,`Socio-economic Dimensions`,Biodiversity,`Landscape Assessment`,`Catchment Based Approach`,`Invasives Pests Diseases`) %>%
mutate(sum = rowSums(.[2:10])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -`LspType`, -sum) %>%
mutate(prop = count / sum) #calculate proportion
ggplot(othCCounts, aes(x=`LspType`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(othCCounts, aes(x=`LspType`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```