-
Notifications
You must be signed in to change notification settings - Fork 0
/
01-ialeUK25-analysisConferenceYear.Rmd
242 lines (164 loc) · 8.13 KB
/
01-ialeUK25-analysisConferenceYear.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# Analysis by Conference Year
Bar and line charts to examine how contribution to conferences have changed over time.
```{r results='hide', warning=F, message=F}
#Load Data
#(After slightly cleaning column titles - in future include code to do that here)
rm(list=ls())
library(tidyverse)
library(ggplot2)
library(kableExtra)
path <- "C:/Users/k1076631/Google Drive/Research/Papers/InProgress/ialeUK_25years/QuantAnalysis/Rproject"
setwd(path)
filename <- "abstract_review_export_2018-06-11.csv"
cpdata <- read_csv(filename)
```
```{r}
#spec(cpdata)
yrdata <- cpdata %>%
select_if(is.numeric) %>%
group_by(`Conference Year`) %>%
summarise_all(sum, na.rm=T)
#use DT to present the entire data table on HTML? See https://rstudio.github.io/DT/
```
## Total Conference Contributions
Quick observations:
- general increase through time to early 2000s then drop but steady through 2010s
```{r}
summary <- cpdata %>%
select_if(is.numeric) %>%
group_by(`Conference Year`) %>%
summarise_all(sum, na.rm=T) %>%
select(`Conference Year`,Academic, Government,NGO,Business,Private) %>%
mutate(count = rowSums(.[2:6])) %>%
select(`Conference Year`, count) %>%
mutate(prop = count/sum(count)) %>%
mutate(prop = round(prop,3))
summary %>%
kable() %>%
kable_styling() %>%
scroll_box(width = "100%")
ggplot(summary, aes(x=`Conference Year`, y=count)) +
geom_bar(stat="identity")
```
## Author Affiliation
Quick observations:
- Academic contributors generally dominate
- Government contributors have decreased through time
- NGO attendance has replaced declines in Government? (could check sum of Gov + NGO through time)
```{r}
authorCounts <- yrdata %>%
select(`Conference Year`,Academic, Government,NGO,Business,Private) %>%
mutate(yrsum = rowSums(.[2:6])) %>% #calculate total for subsquent calcultation of proportion
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum) #calculate proportion
ggplot(authorCounts, aes(x=`Conference Year`, y=count)) + geom_line(aes(colour=Type))
ggplot(authorCounts, aes(x=`Conference Year`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(authorCounts, aes(x=`Conference Year`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Landscape Type
Quick observations:
- Lowland rural generaly dominates (but lesser contribution in later years)
- Spikes in some years for types (corresponding to special themes)
- Urban and Seascape both appear for first time in 1998; urban then constant presence, but seascape more variable until recent years
```{r}
lspCounts <- yrdata %>%
select(`Conference Year`,`Upland rural`, `Lowland rural`, Urban, Riverscape, Seascape, `Undefined LspType`,Other) %>%
mutate(yrsum = rowSums(.[2:8])) %>%
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum)
ggplot(lspCounts, aes(x=`Conference Year`, y=count)) + geom_line(aes(colour=Type))
ggplot(lspCounts, aes(x=`Conference Year`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(lspCounts, aes(x=`Conference Year`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Organism
Quick observations:
- no clear patterns
- some years contain no Generic Habitat - is this real or a data entry issue?
```{r}
sppCounts <- yrdata %>%
select(`Conference Year`,Mammals, Humans, Birds, Reptiles, Inverts, Plants, Amphibians, Fish, `Generic Habitat`,`Woodland Forests`) %>%
mutate(yrsum = rowSums(.[2:11])) %>%
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum)
ggplot(sppCounts, aes(x=`Conference Year`, y=count)) + geom_line(aes(colour=Type))
ggplot(sppCounts, aes(x=`Conference Year`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(sppCounts, aes(x=`Conference Year`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Methods
Quick observations:
- empirical studies have decreased through time
- GIS and qualitative have increased through time
- Quantitative and theoretical quite steady through time (although theoretical does seem to have reduced after initial years)
```{r}
methodsCounts <- yrdata %>%
select(`Conference Year`, Empirical, Theoretical, Qualitative, Quantitative, GIS, `Remote sensing`) %>%
mutate(yrsum = rowSums(.[2:7])) %>%
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum)
ggplot(methodsCounts, aes(x=`Conference Year`, y=count)) + geom_line(aes(colour=Type))
ggplot(methodsCounts, aes(x=`Conference Year`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(methodsCounts, aes(x=`Conference Year`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Spatial Extent
Quick observations:
- no clear trends?
- Global studies only appear from 2014 onwards
```{r}
extentCounts <- yrdata %>%
select(`Conference Year`, Micro, Mini, Local, Regional, National, Continental, Global,`Undefined Extent`) %>%
mutate(yrsum = rowSums(.[2:9])) %>%
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum)
ggplot(extentCounts, aes(x=`Conference Year`, y=count)) + geom_line(aes(colour=Type))
ggplot(extentCounts, aes(x=`Conference Year`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(extentCounts, aes(x=`Conference Year`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Temporal Extent
Quick observations:
- most studies have undefined temporal duration
- those that do are dominated by studies over decades and years
```{r echo=F}
temporalCounts <- yrdata %>%
select(`Conference Year`, Hours, Days, Weeks, Months, Years, Decades, Centuries, Longer, `Undefined Temporal`
) %>%
mutate(yrsum = rowSums(.[2:10])) %>%
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum)
ggplot(temporalCounts, aes(x=`Conference Year`, y=count)) + geom_line(aes(colour=Type))
ggplot(temporalCounts, aes(x=`Conference Year`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(temporalCounts, aes(x=`Conference Year`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Concepts
Quick observations:
- Ecosystem services appear from 1998 and have grown recently
- climate change interactions have only become common recently (since 2008)
- 'Scale and scaling' and 'connectivity and fragmentation seem to have decreased in recent years
- LUCC and Spatial Analysis are mainstays throughout
```{r}
conceptCounts <- yrdata %>%
select(`Conference Year`, `PPS of landscapes`,
`Connectivity and fragmentation`, `Scale and scaling`,`Spatial analysis and modeling`,LUCC,`History and legacy`,`Climate change interactions`,`Ecosystem services`,`Landscape sustainability`,`Accuracy and uncertainty`
) %>%
mutate(yrsum = rowSums(.[2:11])) %>%
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum)
ggplot(conceptCounts, aes(x=`Conference Year`, y=count)) + geom_line(aes(colour=Type))
ggplot(conceptCounts, aes(x=`Conference Year`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(conceptCounts, aes(x=`Conference Year`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```
## Other Concepts
Quick observations:
- socio-economic studies have increased through time
- biodiversity has decreased through time
- Landscape management and Biodiversity peak in early 2000s
```{r}
othCCounts <- yrdata %>%
select(`Conference Year`, `Green Infrastructure`,`Planning and Architecture`,`Management and Conservation`,`Cultural Landscapes`,`Socio-economic Dimensions`,Biodiversity,`Landscape Assessment`,`Catchment Based Approach`,`Invasives Pests Diseases`
) %>%
mutate(yrsum = rowSums(.[2:10])) %>%
gather(key = Type, value = count, -`Conference Year`, -yrsum) %>%
mutate(prop = count / yrsum)
ggplot(othCCounts, aes(x=`Conference Year`, y=count)) + geom_line(aes(colour=Type))
ggplot(othCCounts, aes(x=`Conference Year`, y=count, fill=Type)) + geom_bar(stat="identity", colour="white")
ggplot(othCCounts, aes(x=`Conference Year`, y=prop, fill=Type)) + geom_bar(stat="identity", colour="white")
```