-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathcomfyui_info_hash.py
445 lines (364 loc) · 13.4 KB
/
comfyui_info_hash.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import copy
import glob
import os
import textwrap
from pathlib import Path
from typing import Any, TypedDict
import numpy as np
import torch
import yaml
from PIL import Image
NODE_CLASS_MAPPINGS = {}
NODE_DISPLAY_NAME_MAPPINGS = {}
def register_node(identifier: str, display_name: str):
def decorator(cls):
NODE_CLASS_MAPPINGS[identifier] = cls
NODE_DISPLAY_NAME_MAPPINGS[identifier] = display_name
return cls
return decorator
def load_image(path, convert="RGB"):
img = Image.open(path).convert(convert)
img = np.array(img).astype(np.float32) / 255.0
img = torch.from_numpy(img).unsqueeze(0)
return img
class RangedConfig:
def __init__(self, definition: dict[str, Any], range_key: str = "ranges") -> None:
self.definition = definition
self.range_key = range_key
self._validate()
def _validate(self):
for k, v in self.definition.items():
if k == self.range_key:
assert isinstance(v, dict), f"{type(v)!r}"
for kk, vv in v.items():
# sub prompts ranges
assert isinstance(kk, int), f"{type(kk)!r}"
assert isinstance(vv, dict), f"{type(vv)!r}"
for kkk, vvv in vv.items():
# actual sub prompts
assert isinstance(kkk, str), f"{type(kkk)!r}"
if vvv is None:
vvv = ""
assert isinstance(vvv, (int, float, str)), f"{type(vvv)!r}"
else:
# base prompts
assert isinstance(k, str), f"{type(k)!r}"
if v is None:
v = ""
assert isinstance(v, (int, float, str)), f"{type(v)!r}"
def get_ranges(self):
return sorted(self.definition[self.range_key].keys())
def _get_range_start(self, i: int) -> int | None:
if len(self.definition[self.range_key]) == 0:
return None
range_starts = sorted(self.definition[self.range_key].keys())
for range_start_idx, range_start in enumerate(range_starts):
if i < range_start:
if range_start_idx == 0:
return None
else:
return range_starts[range_start_idx - 1]
return range_starts[-1]
def _get_raw_sub_prompt(self, i: int):
range_start = self._get_range_start(i)
if range_start is None:
# not in range, just use base definition
return {**self.definition, "i": i}
else:
raw_sub_prompt = self.definition[self.range_key][self._get_range_start(i)]
return {**self.definition, **raw_sub_prompt, "i": i}
def get_sub_prompt(self, i: int):
raw_sub_prompt = self._get_raw_sub_prompt(i)
sub_prompt = {}
for k, v in raw_sub_prompt.items():
if k == self.range_key:
continue
if isinstance(v, str):
v = v.format(**raw_sub_prompt)
sub_prompt[k] = v
return sub_prompt
DEFAULT_CONFIG = """\
p: |
masterpiece, best quality,
{sp},
n: |
{sn},
embedding:EasyNegative, embedding:bad-artist, embedding:bad-hands-5, embedding:bad-image-v2-39000,
lowres, ((bad anatomy)), ((bad hands)), text, missing finger, extra digits, fewer digits, blurry, ((mutated hands and fingers)), (poorly drawn face), ((mutation)), ((deformed face)), (ugly), ((bad proportions)), ((extra limbs)), extra face, (double head), (extra head), ((extra feet)), monster, logo, cropped, worst quality, low quality, normal quality, jpeg, humpbacked, long body, long neck, ((jpeg artifacts)),
path: "{i:04d}.png"
example: 0
ranges:
1:
sp: positive subprompt for 1-4
sn: negative subprompt for 1-4
5:
sp: positive subprompt for 5-...
sn: negative subprompt for 5-...
example: 1
"""
@register_node("JWInfoHashFromRangedInfo", "Info Hash From Ranged Config")
class _:
CATEGORY = "jamesWalker55"
INPUT_TYPES = lambda: {
"required": {
"config": (
"STRING",
{"default": DEFAULT_CONFIG, "multiline": True, "dynamicPrompts": False},
),
"i": ("INT", {"default": 1, "min": 0, "step": 1, "max": 999999}),
"ranges_key": ("STRING", {"default": "ranges", "multiline": False}),
}
}
RETURN_TYPES = ("INFO_HASH",)
FUNCTION = "execute"
def execute(self, config: str, i: int, ranges_key: str):
config = yaml.safe_load(config)
info = RangedConfig(config, range_key=ranges_key)
return (info.get_sub_prompt(i),)
@register_node("JWInfoHashListFromRangedInfo", "Info Hash List From Ranged Config")
class _:
CATEGORY = "jamesWalker55"
INPUT_TYPES = lambda: {
"required": {
"config": (
"STRING",
{"default": DEFAULT_CONFIG, "multiline": True, "dynamicPrompts": False},
),
"i_start": ("INT", {"default": 0, "min": 0, "step": 1, "max": 999999}),
"i_stop": ("INT", {"default": 16, "min": 0, "step": 1, "max": 999999}),
"ranges_key": ("STRING", {"default": "ranges", "multiline": False}),
"inclusive": (("false", "true"), {"default": "false"}),
}
}
RETURN_TYPES = ("INFO_HASH_LIST",)
FUNCTION = "execute"
def execute(
self, config: str, i_start: int, i_stop: int, ranges_key: str, inclusive: str
):
inclusive: bool = inclusive == "true"
config = yaml.safe_load(config)
info = RangedConfig(config, range_key=ranges_key)
subinfos = [
info.get_sub_prompt(i)
for i in range(i_start, i_stop + 1 if inclusive else i_stop)
]
return (subinfos,)
def calculate_batches(
i_start: int, # start of i
i_stop: int, # end of i, excludes end
range_starts: int, # scene cuts, batch will be terminated before this
max_batch_size: int, # maximum length of batch
):
"""
:param int i_start: start of i
:param int i_stop: end of i, excludes end
:param int range_starts: scene cuts, batch will be terminated before this
:param int max_batch_size: maximum length of batch
:return: a list of 2-tuples, each represents (batch start frame, batch stop frame), where stop frame is exclusive
"""
batch_starts: list[int] = [] # also includes end frame
i = i_start - 1
counter = -1
while True:
i += 1
counter += 1
if i >= i_stop:
batch_starts.append(i)
break
if i in range_starts:
batch_starts.append(i)
counter = 0
continue
if counter >= max_batch_size:
batch_starts.append(i)
counter = 0
continue
if counter == 0:
batch_starts.append(i)
continue
batches = list(zip(batch_starts[:-1], batch_starts[1:]))
return batches
@register_node("JWRangedInfoCalculateSubBatch", "Calculate Sub Batch for Ranged Info")
class _:
CATEGORY = "jamesWalker55"
INPUT_TYPES = lambda: {
"required": {
"config": (
"STRING",
{"default": DEFAULT_CONFIG, "multiline": True, "dynamicPrompts": False},
),
"ranges_key": ("STRING", {"default": "ranges", "multiline": False}),
"batch_idx": ("INT", {"default": 0, "min": 0, "step": 1, "max": 999999}),
"i_start": ("INT", {"default": 1, "min": 0, "step": 1, "max": 999999}),
"i_stop": ("INT", {"default": 100, "min": 0, "step": 1, "max": 999999}),
"max_batch_size": (
"INT",
{"default": 16, "min": 1, "step": 1, "max": 999999},
),
"inclusive": (("false", "true"), {"default": "false"}),
}
}
RETURN_NAMES = ("BATCH_I_START", "BATCH_I_STOP")
RETURN_TYPES = ("INT", "INT")
FUNCTION = "execute"
def execute(
self,
config: str,
ranges_key: str,
batch_idx: int,
i_start: int,
i_stop: int,
max_batch_size: int,
inclusive: str,
):
inclusive: bool = inclusive == "true"
config = yaml.safe_load(config)
info = RangedConfig(config, range_key=ranges_key)
range_starts = set(info.get_ranges())
# get images in selected batch
batches = calculate_batches(
i_start, i_stop + 1 if inclusive else i_stop, range_starts, max_batch_size
)
batch = batches[batch_idx]
return (batch[0], batch[1])
@register_node(
"JWInfoHashFromRangedInfoAndLoadSubsequences",
"Info Hash From Ranged Config and Load Batch",
)
class _:
CATEGORY = "jamesWalker55"
INPUT_TYPES = lambda: {
"required": {
"config": (
"STRING",
{"default": DEFAULT_CONFIG, "multiline": True, "dynamicPrompts": False},
),
"ranges_key": ("STRING", {"default": "ranges", "multiline": False}),
"path_key": ("STRING", {"default": "path", "multiline": False}),
"batch_idx": ("INT", {"default": 0, "min": 0, "step": 1, "max": 999999}),
"i_start": ("INT", {"default": 1, "min": 0, "step": 1, "max": 999999}),
"i_stop": ("INT", {"default": 100, "min": 0, "step": 1, "max": 999999}),
"max_batch_size": (
"INT",
{"default": 16, "min": 1, "step": 1, "max": 999999},
),
"inclusive": (("false", "true"), {"default": "false"}),
}
}
RETURN_NAMES = ("INFO_HASH", "IMAGE", "BATCH_I_START", "BATCH_I_STOP")
RETURN_TYPES = ("INFO_HASH", "IMAGE", "INT", "INT")
FUNCTION = "execute"
def execute(
self,
config: str,
ranges_key: str,
path_key: str,
batch_idx: int,
i_start: int,
i_stop: int,
max_batch_size: int,
inclusive: str,
):
inclusive: bool = inclusive == "true"
config = yaml.safe_load(config)
info = RangedConfig(config, range_key=ranges_key)
range_starts = set(info.get_ranges())
# get images in selected batch
batches = calculate_batches(
i_start, i_stop + 1 if inclusive else i_stop, range_starts, max_batch_size
)
batch = batches[batch_idx]
print(f"Getting images in batch: {batch}")
images = []
for i in range(batch[0], batch[1]):
subinfo = info.get_sub_prompt(i)
path = subinfo[path_key]
print(f" Loading: {path}")
img = load_image(path)
images.append(img)
images = torch.cat(images, dim=0)
return (info.get_sub_prompt(batch[0]), images, batch[0], batch[1])
@register_node("JWInfoHashExtractInteger", "Info Hash Extract Integer")
class _:
CATEGORY = "jamesWalker55"
INPUT_TYPES = lambda: {
"required": {
"info_hash": ("INFO_HASH",),
"key": ("STRING", {"default": "i", "multiline": False}),
}
}
RETURN_TYPES = ("INT",)
FUNCTION = "execute"
def execute(self, info_hash: dict, key: str):
val = int(info_hash[key])
return (val,)
@register_node("JWInfoHashExtractFloat", "Info Hash Extract Float")
class _:
CATEGORY = "jamesWalker55"
INPUT_TYPES = lambda: {
"required": {
"info_hash": ("INFO_HASH",),
"key": ("STRING", {"default": "key", "multiline": False}),
}
}
RETURN_TYPES = ("FLOAT",)
FUNCTION = "execute"
def execute(self, info_hash: dict, key: str):
val = float(info_hash[key])
return (val,)
@register_node("JWInfoHashExtractString", "Info Hash Extract String")
class _:
CATEGORY = "jamesWalker55"
INPUT_TYPES = lambda: {
"required": {
"info_hash": ("INFO_HASH",),
"key": ("STRING", {"default": "p", "multiline": False}),
}
}
RETURN_TYPES = ("STRING",)
FUNCTION = "execute"
def execute(self, info_hash: dict, key: str):
val = str(info_hash[key])
return (val,)
@register_node("JWInfoHashListExtractStringList", "Info Hash List Extract String List")
class _:
CATEGORY = "jamesWalker55"
INPUT_TYPES = lambda: {
"required": {
"info_hash_list": ("INFO_HASH_LIST",),
"key": ("STRING", {"default": "p", "multiline": False}),
}
}
RETURN_TYPES = ("STRING_LIST",)
FUNCTION = "execute"
def execute(self, info_hash_list: list[dict], key: str):
val = [str(info_hash[key]) for info_hash in info_hash_list]
return (val,)
@register_node("JWInfoHashFromInfoHashList", "Extract Info Hash From Info Hash List")
class _:
CATEGORY = "jamesWalker55"
INPUT_TYPES = lambda: {
"required": {
"info_hash_list": ("INFO_HASH_LIST",),
"i": ("INT", {"default": 0, "step": 1, "min": -99999999, "max": 99999999}),
}
}
RETURN_TYPES = ("INFO_HASH",)
FUNCTION = "execute"
def execute(self, info_hash_list: list[dict], i: int):
return (info_hash_list[i],)
@register_node("JWInfoHashPrint", "Print Info Hash (Debug)")
class _:
CATEGORY = "jamesWalker55"
INPUT_TYPES = lambda: {
"required": {
"info_hash": ("INFO_HASH",),
}
}
RETURN_TYPES = ()
OUTPUT_NODE = True
FUNCTION = "execute"
def execute(self, info_hash: dict):
from pprint import pformat, pprint
pprint(info_hash)
raise ValueError(pformat(info_hash))