-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathcomfyui_color_ops.py
153 lines (125 loc) · 3.79 KB
/
comfyui_color_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import torch
import torchvision.transforms.functional as F
NODE_CLASS_MAPPINGS = {}
NODE_DISPLAY_NAME_MAPPINGS = {}
def register_node(identifier: str, display_name: str):
def decorator(cls):
NODE_CLASS_MAPPINGS[identifier] = cls
NODE_DISPLAY_NAME_MAPPINGS[identifier] = display_name
return cls
return decorator
@register_node("JWImageMix", "Image Mix")
class _:
CATEGORY = "jamesWalker55"
BLEND_TYPES = ("mix", "multiply")
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"blend_type": (cls.BLEND_TYPES, {"default": "mix"}),
"factor": ("FLOAT", {"min": 0, "max": 1, "step": 0.01, "default": 0.5}),
"image_a": ("IMAGE",),
"image_b": ("IMAGE",),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
def execute(
self,
blend_type: str,
factor: float,
image_a: torch.Tensor,
image_b: torch.Tensor,
):
assert blend_type in self.BLEND_TYPES
assert isinstance(factor, float)
assert isinstance(image_a, torch.Tensor)
assert isinstance(image_b, torch.Tensor)
assert image_a.shape == image_b.shape
if blend_type == "mix":
mixed = image_a * (1 - factor) + image_b * factor
elif blend_type == "multiply":
mixed = image_a * (1 - factor + image_b * factor)
else:
raise NotImplementedError(f"Blend type not yet implemented: {blend_type}")
return (mixed,)
@register_node("JWImageContrast", "Image Contrast")
class _:
CATEGORY = "jamesWalker55"
INPUT_TYPES = lambda: {
"required": {
"image": ("IMAGE",),
"factor": (
"FLOAT",
{"default": 1.0, "min": 0.0, "max": 2.0, "step": 0.01},
),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
def execute(
self,
image: torch.Tensor,
factor: float,
):
assert isinstance(image, torch.Tensor)
assert isinstance(factor, float)
image = image.permute(0, 3, 1, 2)
image = F.adjust_contrast(image, factor)
image = image.permute(0, 2, 3, 1)
return (image,)
@register_node("JWImageSaturation", "Image Saturation")
class _:
CATEGORY = "jamesWalker55"
INPUT_TYPES = lambda: {
"required": {
"image": ("IMAGE",),
"factor": (
"FLOAT",
{"default": 1.0, "min": 0.0, "max": 2.0, "step": 0.01},
),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
def execute(
self,
image: torch.Tensor,
factor: float,
):
assert isinstance(image, torch.Tensor)
assert isinstance(factor, float)
image = image.permute(0, 3, 1, 2)
image = F.adjust_saturation(image, factor)
image = image.permute(0, 2, 3, 1)
return (image,)
@register_node("JWImageLevels", "Image Levels")
class _:
CATEGORY = "jamesWalker55"
INPUT_TYPES = lambda: {
"required": {
"image": ("IMAGE",),
"min": (
"FLOAT",
{"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01},
),
"max": (
"FLOAT",
{"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01},
),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
def execute(
self,
image: torch.Tensor,
min: float,
max: float,
):
assert isinstance(image, torch.Tensor)
assert isinstance(min, float)
assert isinstance(max, float)
image = (image - min) / (max - min)
image = torch.clamp(image, 0.0, 1.0)
return (image,)