-
Notifications
You must be signed in to change notification settings - Fork 0
/
peg_solitaire_board_cmp.py
403 lines (348 loc) · 13.2 KB
/
peg_solitaire_board_cmp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
"""
Peg Solitaire Puzzle Implementation
Author: Spencer Chang, Jacob Marshall
This program implements the peg solitaire game for 3 different game boards.
Solvability is not guaranteed on at least one...yet.
The program used the following websites to create its base code.
# Example program to show using an array to back a grid on-screen.
#
# Sample Python/Pygame Programs
# Simpson College Computer Science
# http://programarcadegames.com/
# http://simpson.edu/computer-science/
# Explanation video: http://youtu.be/mdTeqiWyFn
"""
import board_solver as bs
import os
import pygame
import sys
# import termios
import time
import copy
import random
import json
# import tty
from pprint import pprint, pformat
from queue import PriorityQueue
# from termcolor import cprint
from typing import FrozenSet, List, Tuple
# Define some colors
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
GREEN = (0, 255, 0)
RED = (255, 0, 0)
BLUE = (50, 50, 255)
GOLD = (255, 215, 0)
DKGREEN = (0, 100, 0)
# This sets the WIDTH and HEIGHT of each grid location
WIDTH = 50
HEIGHT = 50
# This sets the margin between each cell
MARGIN = 5
N_SQ = 7
PEG_NONE = 0
PEG_EXIST = 1
PEG_SELECT = 2
PEG_WALL = 3
mouseDown = False
# This class represents the player
# It derives from the "Sprite" class in Pygame
class Button:
# Constructor. Pass in the color of the block, and its x and y position
def __init__(self, origin, advanceBoard):
# Determines whether we are meant to advance the board list or not
self.adv = advanceBoard
# Variables to hold the height and width of the block
self.width = 20
self.height = 20
# Create an image of the player, and fill it with a color.
# This could also be an image loaded from the disk.
self.image = pygame.Surface([self.width, self.height])
self.image.fill(DKGREEN)
self.rect = self.image.get_rect()
self.rect.x = origin[0]
self.rect.y = origin[1]
self.point_list = []
if self.adv:
self.point_list.append([self.rect.x + 5, self.rect.y + 2])
self.point_list.append([self.rect.x + 17, self.rect.y + 9])
self.point_list.append([self.rect.x + 17, self.rect.y + 10])
self.point_list.append([self.rect.x + 5, self.rect.y + 17])
else:
self.point_list.append([self.rect.x + 17, self.rect.y + 2])
self.point_list.append([self.rect.x + 5, self.rect.y + 9])
self.point_list.append([self.rect.x + 5, self.rect.y + 10])
self.point_list.append([self.rect.x + 17, self.rect.y + 17])
# Update the position of the player
def update(self, screen, board_list, og_list, idx):
pos = pygame.mouse.get_pos()
grid = board_list[idx]
midpoint = [self.rect.x + self.width // 2, self.rect.y + self.height // 2]
# The mouse click was not meant for this button
if abs(pos[0] - midpoint[0]) > 8 or abs(pos[1] - midpoint[1]) > 8:
return grid, idx
if self.adv and idx >= len(board_list) - 1:
# There are no more boards to be had
return grid, idx
elif not self.adv and idx <= 0:
return grid, idx
# Advance or retreat on boards
if self.adv:
idx += 1
else:
idx -= 1
# Reset the board to the original; this is the reset functionality
board_list[idx] = copy.deepcopy(og_list[idx])
grid = board_list[idx]
print("Button clicked: " + str(self.adv))
return grid, idx
# When we update the screen, we need to call the following method
def drawIcon(self, screen):
pygame.draw.rect(screen, DKGREEN, self.rect)
pygame.draw.polygon(screen, GOLD, self.point_list)
def mouseColorSpace(grid, screen):
# User clicks the mouse. Get the position
pos = pygame.mouse.get_pos()
column = pos[0] // (WIDTH + MARGIN)
row = pos[1] // (HEIGHT + MARGIN)
coord = list([-1, -1])
# Find which peg is considered selected amongst them all.
for r in range(N_SQ):
for c in range(N_SQ):
if grid[r][c] == PEG_SELECT:
coord = list([r, c])
# If the mouse is clicked within the board's border, do the following.
if column < N_SQ or row < N_SQ:
# Look through all to see if any further action is needed
for r in range(N_SQ):
for c in range(N_SQ):
# continue loop if we're not looking at the square touched by the user or it's a wall
if [r, c] != [row, column]:
continue
# We're looking at the same coord touched by mouse
if (
grid[r][c] == PEG_NONE
and coord != [-1, -1]
and (abs(coord[0] - r) == 2 or abs(coord[1] - c) == 2)
):
grid = jumpPeg(grid, coord, r, c)
elif [r, c] == coord:
grid[coord[0]][coord[1]] = PEG_EXIST
elif (
coord != [-1, -1]
and coord != [r, c]
and (grid[r][c] != PEG_NONE and grid[r][c] != PEG_WALL)
):
grid[coord[0]][coord[1]] = PEG_EXIST
grid[r][c] = PEG_SELECT
elif coord == [-1, -1] and (
grid[r][c] != PEG_NONE and grid[r][c] != PEG_WALL
):
grid[r][c] = PEG_SELECT
print("Click ", pos, "Grid coordinates: ", row, column)
return grid, screen
def jumpPeg(grid, selCoord, row, col):
"""
Provides the logic for jumping pegs in the solitaire game
Pre-condition: 2 pegs and 1 hole in a line, the selected peg is at the end of this
line, [i.e. (P P H), (H P P)]
Post-condition: 2 holes and 1 peg in a line, [i.e. (H H P), (P H H)]
We know that the given selCoord should be a selected peg and the 'row' and 'col' are
the hole.
"""
# We want to check that the selected peg is in line with proper preconditions
if row != selCoord[0] and col != selCoord[1]:
return grid
elif grid[(row + selCoord[0]) // 2][(col + selCoord[1]) // 2] == PEG_NONE:
# Check the midpoint between the two for an existing peg
return grid
# It appears we have passed the precondition; execute post-conditions
grid[row][col] = PEG_EXIST
grid[(row + selCoord[0]) // 2][(col + selCoord[1]) // 2] = PEG_NONE
grid[selCoord[0]][selCoord[1]] = PEG_NONE
return grid
def makeTestBoards(board_list):
# Create a 2 dimensional array. A two dimensional
# array is simply a list of lists.
grid = []
for row in range(N_SQ):
# Add an empty array that will hold each cell
# in this row
grid.append([])
for column in range(N_SQ):
# MAKE A CROSS SHAPE
if (
(row < 2 and column < 2)
or (row >= 5 and column < 2)
or (row >= 5 and column >= 5)
or (row < 2 and column >= 5)
):
grid[row].append(PEG_WALL)
else:
grid[row].append(PEG_EXIST) # Append a cell
# Need at least one hole in the center
grid[3][3] = 0
board_list.append(grid)
grid = []
for row in range(N_SQ):
grid.append([])
for column in range(N_SQ):
# MAKE A SQUARE SHAPE
grid[row].append(PEG_EXIST) # Append a cell
grid[3][3] = 0
board_list.append(grid)
grid = []
for row in range(N_SQ):
grid.append([])
for column in range(N_SQ):
# MAKE AN H SHAPE
if (row < 2 and column == 3) or (row >= 5 and column == 3):
grid[row].append(PEG_WALL)
else:
grid[row].append(PEG_EXIST)
grid[3][3] = 0
board_list.append(grid)
return board_list
def main(frozensets=None):
# Reference the global variable N_SQ
global N_SQ
# Process a file to get frozen sets
gameBoards = []
diff = ["easier", "harder"]
colors = [RED, BLUE]
color_labels = ["RED", "BLUE"]
if frozensets == None:
fzs = bs.process_frozen_sets(sys.argv[1])
else:
fzs = frozensets
for i, fz in enumerate(fzs):
gameBoards.append(bs.PegSolitaire(fz))
# Shuffle the game boards and difficulty labels in the same way
shuffled_temp = list(zip(gameBoards, diff))
random.shuffle(shuffled_temp)
gameBoards, diff = zip(*shuffled_temp)
gameBoards = [b for b in gameBoards]
# TODO - We need to build in Jacob's predetermination of what boards are shown using board colors.
# TODO - Need 'record' keyword for checking which board was considered harder
boardIdx = 0
# Preserve the original board configurations
originals = copy.deepcopy(gameBoards)
# Grab the number of squares in one row of a game board
N_SQ = len(gameBoards[0][0])
# Initialize pygame
pygame.init()
# Set the HEIGHT and WIDTH of the screen
navWinOrigin = [0, N_SQ * (HEIGHT + MARGIN) + MARGIN]
navWinHeight = HEIGHT * 4
windowSize = [
N_SQ * (WIDTH + MARGIN) + MARGIN,
N_SQ * (HEIGHT + MARGIN) + MARGIN + navWinHeight,
]
screen = pygame.display.set_mode(windowSize)
# Set title of screen
pygame.display.set_caption("Peg Solitaire Puzzles")
# Used to manage how fast the screen updates
clock = pygame.time.Clock()
leftButton = Button(
[
windowSize[0] // 2 - (N_SQ * WIDTH // 2 // 2),
navWinOrigin[1] + (N_SQ * HEIGHT // 2 // 2),
],
False,
)
rightButton = Button(
[
windowSize[0] - (N_SQ * WIDTH // 2),
navWinOrigin[1] + (N_SQ * HEIGHT // 2 // 2),
],
True,
)
button_list = [leftButton, rightButton]
grid = gameBoards[boardIdx]
# Loop until the user clicks the close button.
done = False
# -------- Main Program Loop -----------
# Retrieve the easiest board we can find...
while not done:
# print("Screen on")
for event in pygame.event.get(): # User did something
if event.type == pygame.QUIT: # If user clicked close
done = True # Flag that we are done so we exit this loop
elif event.type == pygame.MOUSEBUTTONDOWN:
grid, screen = mouseColorSpace(grid, screen)
grid, boardIdx = rightButton.update(screen, showBoards, originals, boardIdx)
grid, boardIdx = leftButton.update(screen, showBoards, originals, boardIdx)
# Set the screen background
screen.fill(BLACK)
# Draw the grid
for row in range(N_SQ):
for column in range(N_SQ):
if grid[row][column] == PEG_NONE:
color = DKGREEN
pygame.draw.circle(
screen,
color,
[
((MARGIN + WIDTH) * column + MARGIN) + WIDTH // 2 + 1,
((MARGIN + HEIGHT) * row + MARGIN) + WIDTH // 2 + 1,
],
WIDTH // 2 + 1
)
color = BLACK
pygame.draw.circle(
screen,
color,
[
((MARGIN + WIDTH) * column + MARGIN) + WIDTH // 2 + 1,
((MARGIN + HEIGHT) * row + MARGIN) + WIDTH // 2 + 1,
],
WIDTH // 2 - 4
)
continue
elif grid[row][column] == PEG_EXIST:
color = WHITE
pygame.draw.circle(
screen,
color,
[
((MARGIN + WIDTH) * column + MARGIN) + WIDTH // 2 + 1,
((MARGIN + HEIGHT) * row + MARGIN) + WIDTH // 2 + 1,
],
WIDTH // 2
)
continue
elif grid[row][column] == PEG_SELECT:
color = BLUE
pygame.draw.circle(
screen,
color,
[
((MARGIN + WIDTH) * column + MARGIN) + WIDTH // 2 + 1,
((MARGIN + HEIGHT) * row + MARGIN) + WIDTH // 2 + 1,
],
WIDTH // 2
)
continue
else:
color = BLACK
pygame.draw.rect(
screen,
color,
[
(MARGIN + WIDTH) * column + MARGIN,
(MARGIN + HEIGHT) * row + MARGIN,
WIDTH,
HEIGHT,
],
)
leftButton.drawIcon(screen)
rightButton.drawIcon(screen)
# Limit to 60 frames per second
clock.tick(60)
# Go ahead and update the screen with what we've drawn.
pygame.display.flip()
# Be IDLE friendly. If you forget this line, the program will 'hang'
# on exit.
pygame.quit()
if __name__ == "__main__":
main()