-
Notifications
You must be signed in to change notification settings - Fork 0
/
Propiedad_semidistributiva_de_la_interseccion_sobre_la_union.lean
77 lines (63 loc) · 1.51 KB
/
Propiedad_semidistributiva_de_la_interseccion_sobre_la_union.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
-- Propiedad semidistributiva de la intersección sobre la unión
-- José A. Alonso Jiménez <https://jaalonso.github.io>
-- Sevilla, 21-abril-2022
-- ---------------------------------------------------------------------
-- ---------------------------------------------------------------------
-- Demostrar que
-- s ∩ (t ∪ u) ⊆ (s ∩ t) ∪ (s ∩ u)
-- ----------------------------------------------------------------------
import data.set.basic
import tactic
open set
variable {α : Type}
variables s t u : set α
-- 1ª demostración
-- ===============
example :
s ∩ (t ∪ u) ⊆ (s ∩ t) ∪ (s ∩ u) :=
begin
intros x hx,
cases hx with hxs hxtu,
cases hxtu with hxt hxu,
{ left,
split,
{ exact hxs, },
{ exact hxt, }},
{ right,
split,
{ exact hxs, },
{ exact hxu, }},
end
-- 2ª demostración
-- ===============
example :
s ∩ (t ∪ u) ⊆ (s ∩ t) ∪ (s ∩ u) :=
begin
rintros x ⟨hxs, hxt | hxu⟩,
{ left,
exact ⟨hxs, hxt⟩, },
{ right,
exact ⟨hxs, hxu⟩, },
end
-- 3ª demostración
-- ===============
example :
s ∩ (t ∪ u) ⊆ (s ∩ t) ∪ (s ∩ u) :=
begin
rintros x ⟨hxs, hxt | hxu⟩,
{ exact or.inl ⟨hxs, hxt⟩, },
{ exact or.inr ⟨hxs, hxu⟩, },
end
-- 4ª demostración
-- ===============
example :
s ∩ (t ∪ u) ⊆ (s ∩ t) ∪ (s ∩ u) :=
begin
intros x hx,
by finish,
end
-- 5ª demostración
-- ===============
example :
s ∩ (t ∪ u) ⊆ (s ∩ t) ∪ (s ∩ u) :=
by rw inter_union_distrib_left