This repository has been archived by the owner on Feb 7, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 21
/
setup.txt
49 lines (38 loc) · 2.22 KB
/
setup.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
Install Anaconda (Python 3.6 version)
https://www.anaconda.com/download/#linux
Install CUDA:
http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
Install keras and tensorflow-gpu backend (GPU backend for efficient training):
conda update --all
conda install tensorflow-gpu keras
If you ONLY want to do inference (i.e. make predictions) the CPU backend is sufficient:
conda install tensorflow keras
The Tensorflow notebook works without any further modifications.
Edit ~./keras/keras.json only if using the Theano backend:
{
"epsilon": 1e-07,
"backend": "theano",
"floatx": "float32",
"image_dim_ordering": "th",
"image_data_format": "channels_first"
}
run nvidia-smi to check CUDA status:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 387.26 Driver Version: 387.26 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 1070 Off | 00000000:09:00.0 On | N/A |
| 0% 45C P2 64W / 200W | 7883MiB / 8105MiB | 98% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 1264 G /usr/lib/xorg/Xorg 110MiB |
| 0 4747 C /home/js/anaconda3/bin/python 7685MiB |
+-----------------------------------------------------------------------------+
Open the Jupyter notebook:
jupyter notebook emnist.ipynb # when using the theano backend
jupyter notebook emnist_tensorflow.ipynb # when using the tensorflow backend