-
Notifications
You must be signed in to change notification settings - Fork 2
/
los_prediction.py
416 lines (353 loc) · 17.9 KB
/
los_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
# LOS Prediction using data (demographics and 19 features) from Tang et al. https://github.com/illidanlab/urgent-care-comparative
import pickle
import argparse
import pandas as pd
import numpy as np
import progressbar
from datetime import datetime, timedelta
import time
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.impute import SimpleImputer
from sklearn.linear_model import LogisticRegression
from sklearn.neural_network import MLPClassifier
from sklearn import metrics
import warnings
warnings.filterwarnings('ignore')
preprocess_data = False
path_views = "local_mimic/views"
path_tables = "local_mimic/tables"
if preprocess_data:
cohort = pd.read_csv(path_views + "/combo_results_all1.csv")
# used ethnicity_grouped instead of ethnicity so as to remove some other tribes that are not entirely necessary
cohort = cohort[['subject_id', 'hadm_id', 'age', 'ethnicity_grouped','discharge_location', 'marital_status',
'insurance', 'religion', 'gender',
'los_hospital', 'los_icu', 'first_hosp_stay', 'first_icu_stay',
'potassium', 'calcium', 'ph', 'pco2', 'lactate',
'albumin', 'bun', 'creatinine', 'sodium', 'bicarbonate', 'platelet', 'inr',
'heartrate', 'sysbp', 'diasbp', 'tempc', 'resprate', 'spo2', 'glucose', 'charttime'
]]
# Merge by hadm_id
# Target = los. Round it up!
# make labels
dct = {}
bins = np.array([1, 2, 3, 5, 8, 14, 21, 30, 5000])
icu_detailss = cohort[(cohort.age >= 18) & (cohort.los_hospital >= 1) & (cohort.los_icu >= 1)]
icu_details = icu_detailss.copy()
print("icu_details",icu_details)
print('baba', icu_details["los_hospital"])
# icu_details["los_hospital"] = icu_details["los_hospital"].fillna(icu_details["los_hospital"].mean())
# sub2['income'].fillna((sub2['income'].mean()), inplace=True)
# replace null values in los_hospital with the mean
# print("icu_details.los_hospital.nunique()",icu_details.los_hospital.nunique()) #22125
# print("icu_details.los_hospital.nunique() drop nan",icu_details.los_hospital.nunique(dropna=False)) #22125
# digitize los
los_bin = np.digitize(icu_details.los_hospital, bins)
icu_details["los_target"] = los_bin
print("icu_details.los_target.nunique()",icu_details.los_target.nunique()) #8
print("icu_details.los_target.nunique() drop nan",icu_details.los_target.nunique(dropna=False)) #8
print(len(los_bin))
print("np.unique(los_bin)", np.unique(los_bin))
print("icu_details2",icu_details)
# x = np.array([0.2, 6.4, 3.0, 1.6, 9.0])
# bins = np.array([0.0, 1.0, 2.5, 4.0, 10.0])
# inds = np.digitize(x, bins) # the way it works is that the bin should start from the least, then the ind will begin from1 else 0
# print("inds", inds)
#
#
# for n in range(x.size):
# print(bins[inds[n]-1], "<=", x[n], "<", bins[inds[n]])
# final join
df = icu_details#pd.merge(icu_details, admissions, on=['subject_id', 'hadm_id'])
print("df", df)
# # No duplicates though
# df = df.drop_duplicates()
# print("df2", df.to_string())
# count how many records have
print("df['los_target']",df['los_target'].value_counts())
# 5 10849 ==> 8-14days
# 4 10559 ==> 5-8days
# 3 7364 ==> 3-5days
# 6 5264 ==> 14-21days
# 7 3151 ==> 21-30days
# 8 3113 ==> 30+days
# 2 2696 ==> 2-3days
# 1 1713 ==> 1-2days
#make age whole number i.e round it to remove extra
df['age'] = round(df['age'])
# print(df['age'].value_counts().to_string())
print(df.columns)
# ['subject_id', 'hadm_id', 'age', 'ethnicity_grouped', 'los_hospital', 'los_icu',
# 'gender', 'first_hosp_stay', 'first_icu_stay', 'los_target',
# 'discharge_location', 'marital_status', 'insurance', 'religion']
# label encode each attribute
le = LabelEncoder()
df["ethnicity_grouped"] = le.fit_transform(df["ethnicity_grouped"])
# print("le.classes_", le.classes_) #prints classes
# print(df["ethnicity_grouped"].value_counts())
df["gender"] = le.fit_transform(df["gender"])
# print("le.classes_", le.classes_) #prints classes
# print(df["gender"].value_counts())
df["first_hosp_stay"] = le.fit_transform(df["first_hosp_stay"])
df["first_icu_stay"] = le.fit_transform(df["first_icu_stay"])
df["discharge_location"] = le.fit_transform(df["discharge_location"])
df["insurance"] = le.fit_transform(df["insurance"])
# dealing with null values of marital status n religion b4 encoding
df[pd.isnull(df["marital_status"])] = 'NaN'
# print(df["marital_status"].value_counts())
df["marital_status"] = le.fit_transform(df["marital_status"])
df[pd.isnull(df["religion"])] = 'NaN'
# print(df["religion"].value_counts())
df["religion"] = le.fit_transform(df["religion"])
# Removes the row where los_target is NaN and converts to numeric
df = df[df['los_target'] != 'NaN']
df["los_target"] = pd.to_numeric(df["los_target"])
# # We can select the 13600 i.e 1700 from each "class" Reduces prediction
# df = df.sample(n=13600, random_state=1, weights=df["los_target"])
# save df for sanitization:
df.to_csv("local_mimic/views/processed_data_demo_19features.csv", index=False)
# do feature selection using recursive feature selection
from sklearn.feature_selection import RFE
df = pd.read_csv(path_views + "/processed_data_demo_19features.csv")
print(len(df))
# Train model
feature_list = ['age', 'ethnicity_grouped','discharge_location', 'marital_status',
'insurance', 'religion', 'gender',
'potassium', 'calcium', 'ph', 'pco2', 'lactate',
'albumin', 'bun', 'creatinine', 'sodium', 'bicarbonate', 'platelet', 'inr',
'heartrate', 'sysbp', 'diasbp', 'tempc', 'resprate', 'spo2', 'glucose']
features = df[feature_list].to_numpy()
target = df[['los_target']].to_numpy()
# print("target.dtype", target.dtype)
target = np.reshape(target, -1)
# # print("target.dtype", set(target))
# print("features", features)
# print("targetN", target)
print(feature_list)
X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2, stratify=target, random_state=42)
# reshape target
y_train = np.reshape(y_train, -1)
y_test = np.reshape(y_test, -1)
# print("y_train", y_train, "y_test", y_test)
# imputer for null values ("NaN") of religion and marital status with mean of the encoded label
imputer = SimpleImputer(strategy="mean")
X_train = imputer.fit_transform(X_train)
X_test = imputer.transform(X_test)
# # Rmove scaling. It reduces prediction
# # scaling
# sc = StandardScaler()
# X_train = sc.fit_transform(X_train)
# X_test = sc.transform(X_test)
# print("len(X_train)",len(X_train), "len(X_test)",len(X_test))
# model = LogisticRegression(class_weight="balanced", C=10, multi_class="ovr", solver="lbfgs", max_iter=1000)
model = LogisticRegression(multi_class="ovr", solver="lbfgs",max_iter=1000)
# setting ‘ovr’, then a binary problem is fit for each label improved from 0.76 to 0.8
# If removing los_hospital, then remove class_weight="balanced". i.e use default! for LR. This increases accuracy from 0.28 to 0.34
model.fit(X_train, y_train)
preds = model.predict(X_test)
accuracy = metrics.accuracy_score(y_test, preds)
print("accuracy",accuracy)
f1_score = metrics.f1_score(y_test, preds, average="weighted")
print("F1 score", f1_score)
rfe = RFE(model, 3)
rfe = rfe.fit(X_train, y_train)
print("rfe.support", rfe.support_)
print("rfe.ranking",rfe.ranking_)
print("Rank ==============> Feature")
for (rank,feat) in zip(rfe.ranking_, feature_list):
print(rank,"=======>",feat)
# Computing relative importance of each attribute / features using Extratree classifier
from sklearn.ensemble import ExtraTreesClassifier
model = ExtraTreesClassifier(random_state=0)
model.fit(X_train, y_train)
# print("model.feature_importances_", model.feature_importances_)
for (importance,feat) in zip(model.feature_importances_, feature_list):
print(importance,"=======>",feat)
# # 100b (making all data have the same value i.e have the same value for each of the QIDs. i.e 100% generalization)
# # k100c and k10c are the ones that I suppressed 70%
# # k10d is with los_hospital generalized
#
# for data in ["","k10","k10c", "k10d", "k20", "k50", "k100", "k100b", "k100c", "k100d"]:
# # "" ==> original
# print("Data:", data)
# df = pd.read_csv(path_views + "/processed_data"+data+".csv")
#
# if data == "k10c" or data =="k100c":
# # completely remove data with *
# df = df[~df.age.str.contains("\*", na=False)]
#
# # Adding los_hospital increases the model prediction. This is cos it somewhat correlates with the target preidction.
# # If it is taken out, then we have 0.28 accuracy instead of 0.8. los_icu is also important from 0.24 to 0.31.
# # Removing first_hosp_stay increases accuracy from 0.24 to o.28
# #Religion adds and insurance adds nothing to the prediction
# # age and marital_status is also less significant like 0.001
# # adds nothing ethnicity_grouped
#
#
#
# # Train model
#
# # features = df[['age', 'ethnicity_grouped', 'los_icu', 'los_hospital',
# # 'gender', 'first_hosp_stay', 'first_icu_stay', 'discharge_location',
# # 'marital_status', 'insurance', 'religion']].to_numpy()
#
# features = df[['age', 'ethnicity_grouped', 'los_icu', 'los_hospital',
# 'gender', 'first_hosp_stay', 'first_icu_stay', 'discharge_location',
# 'marital_status', 'insurance', 'religion'
# ]].to_numpy()
# target = df[['los_target']].to_numpy()
# # print("target.dtype", target.dtype)
# target = np.reshape(target, -1)
# # # print("target.dtype", set(target))
# # print("features", features)
# # print("targetN", target)
#
# # Main problem is from the target. There is a null value in the target
#
# X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2, stratify=target, random_state=42)
#
# # reshape target
# y_train = np.reshape(y_train, -1)
# y_test = np.reshape(y_test, -1)
# # print("y_train", y_train, "y_test", y_test)
#
# # imputer for null values ("NaN") of religion and marital status with mean of the encoded label
# imputer = SimpleImputer(strategy="mean")
# X_train = imputer.fit_transform(X_train)
# X_test = imputer.transform(X_test)
#
# # # Rmove scaling. It reduces prediction
# # # scaling
# # sc = StandardScaler()
# # X_train = sc.fit_transform(X_train)
# # X_test = sc.transform(X_test)
#
# # print("len(X_train)",len(X_train), "len(X_test)",len(X_test))
#
# model = LogisticRegression(class_weight="balanced", C=10, multi_class="ovr", solver="lbfgs", max_iter=1000)
# # model = LogisticRegression(multi_class="ovr", solver="lbfgs",max_iter=1000)
# # setting ‘ovr’, then a binary problem is fit for each label improved from 0.76 to 0.8
# # If removing los_hospital, then remove class_weight="balanced". i.e use default! for LR. This increases accuracy from 0.28 to 0.34
#
# model.fit(X_train, y_train)
# preds = model.predict(X_test)
# accuracy = metrics.accuracy_score(y_test, preds)
# print("accuracy",accuracy)
# f1_score = metrics.f1_score(y_test, preds, average="weighted")
# print("F1 score", f1_score)
#
#
# # # model = MLPClassifier(activation='logistic', solver='sgd', hidden_layer_sizes=(3,),
# # # learning_rate_init=5e-5, max_iter=5000, random_state=42)
# #
# # model = MLPClassifier(hidden_layer_sizes=(5000,), max_iter=10000,activation = 'relu',solver='adam',random_state=1)
# #
# # model.fit(X_train, y_train)
# # preds = model.predict(X_test)
# # accuracy = metrics.accuracy_score(y_test, preds)
# # print("accuracy",accuracy)
# # f1_score = metrics.f1_score(y_test, preds, average="weighted")
# # print("F1 score", f1_score)
#
#
#
#
# # ##### Labels #####
# # def make_labels():
# # icu_details = pd.read_csv(path_views + '/icustay_detail.csv')
# # # apply exclusion criterias
# # icu_details = icu_details[(icu_details.age >= 18) & (icu_details.los_hospital >= 1) & (icu_details.los_icu >= 1)]
# # subj = list(set(icu_details.subject_id.tolist()))
# # # make pivot tables for ICD-9
# # print("=" * 80)
# # print("Making pivot table for ICD-9 codes.".center(80))
# # print("=" * 80)
# # dx_dct, dx_freq = pivot_icd(subj)
# # top25 = dx_freq[0:19] + dx_freq[20:26]
# # top25 = [i[0] for i in top25]
# # icd2idx = dict([(v, k) for k, v in enumerate(top25)])
# # # make labels
# # dct = {}
# # bins = np.array([1, 2, 3, 5, 8, 14, 21, 30, 5000])
# # print('Done!')
# # print("=" * 80)
# # print("Generating Labels...".center(80))
# # print("=" * 80)
# # for sample in progressbar.progressbar(range(len(subj))):
# # s = subj[sample]
# # lst = icu_details[icu_details.subject_id == s].hadm_id.tolist()
# #
# # times = [(pd.to_datetime(icu_details[icu_details.hadm_id == i].admittime.values[0]),
# # pd.to_datetime(icu_details[icu_details.hadm_id == i].dischtime.values[0]), i) for i in lst]
# # times = list(set(times))
# # times = sorted(times, key=lambda x: x[0])
# #
# # readmit = 0
# # for t1, t2 in pairwise(iterable=times):
# # difference = (t2[0] - t1[1]).days
# # if difference <= 30:
# # hadm = t1[-1]
# # readmit = 1
# # if difference < 0:
# # print(difference, s)
# # if readmit == 0:
# # morts = [(icu_details[icu_details.hadm_id == h[-1]].hospital_expire_flag.values[0], h[-1]) for h in times]
# # hadm = [m[-1] for m in morts if m[0] == 1]
# # if len(hadm) > 1:
# # print(morts) # error, one can only experience mortlaity once
# # elif len(hadm) == 1:
# # hadm = hadm[0] # pick the mortality stay if no readmission
# # else:
# # lengths = [(t[1] - t[0], t[-1]) for t in times]
# # hadm = sorted(lengths, key=lambda x: x[0])[-1][-1] # pick the longest stay if no readmit and no deaths.
# #
# # # digitize los
# # los_bin = np.digitize(icu_details[(icu_details.hadm_id == hadm)].los_hospital.values[0], bins)
# # # diagnostic labels
# # dx_labels = [note for note in dx_dct[s][hadm] if note in top25]
# # ohv = np.sum(one_hot([icd2idx[note] for note in dx_labels], 25), axis=0)
# # dct[s] = {'hadm_id': hadm, 'readmit': readmit,
# # 'los_hospital': icu_details[(icu_details.hadm_id == hadm)].los_hospital.values[0],
# # 'los_bin': los_bin,
# # 'mort': icu_details[icu_details.hadm_id == hadm].hospital_expire_flag.values[0],
# # 'dx_lst': dx_dct[s][hadm],
# # 'dx': ohv}
# # return dct, dx_freq, dx_dct
# #
# #
# #
# #
# # def get_demographics(patients):
# # '''patients: {subject_id: hadm_id}
# # post: creates demographics dictionary by subject_id, and index dictionary'''
# # from sklearn.preprocessing import LabelEncoder
# # subj = list(set(patients.keys()))
# # hadm = list(set(patients.values()))
# # cohort = pd.read_csv(path_views + '/icustay_detail.csv')
# # ## Exclusion criteria ##
# # cohort = cohort[cohort.subject_id.isin(patients.keys()) & (cohort.hadm_id.isin(patients.values()))]
# # admissions = pd.read_csv(path_tables + '/admissions.csv')
# # cohort = cohort[['subject_id', 'hadm_id', 'age', 'ethnicity_grouped']]
# # admissions = admissions[['subject_id', 'hadm_id', 'discharge_location', 'marital_status', 'insurance']]
# # df = pd.merge(cohort, admissions, on=['subject_id', 'hadm_id'])
# # df = df.drop_duplicates()
# # df = df[(df.subject_id.isin(subj) & (df.hadm_id.isin(hadm)))]
# # # discretize and to dict
# # # df = df.set_index('subject_id')
# # df = df.drop(columns=['hadm_id'])
# # df['age'] = pd.qcut(df.age, 5, ['very-young', 'young', 'normal', 'old', 'very-old'])
# # df['marital_status'] = df['marital_status'].fillna(value='UNKNOWN MARITAL')
# # # make index unique
# # df = df.groupby(['subject_id']).first().reset_index()
# # df = df.set_index('subject_id')
# # dct = df.to_dict('index')
# # dct = dict([(k, list(set(v.values()))) for k, v in dct.items()])
# # # label encoding
# # categories = list(set(flatten([list(df[c].unique()) for c in list(df.columns)])))
# # encoder = LabelEncoder()
# # encoder.fit(categories)
# # # label encode the dictionary
# # dct = dict([(k, encoder.transform(v)) for k, v in dct.items()])
# # category_dict = dict([(encoder.transform([c])[0], c) for c in categories])
# # return dct, category_dict