-
Notifications
You must be signed in to change notification settings - Fork 0
/
DS1_main_retrieval_multi_task.py
542 lines (435 loc) · 21.7 KB
/
DS1_main_retrieval_multi_task.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
import subprocess
import numpy as np
import argparse
import os
import time
import gc
from collections import Mapping, Container
from sys import getsizeof
import h5py
from torch.utils.data import DataLoader, Dataset
from pytorchtools import EarlyStopping
from sklearn import metrics
from DS1_model_retrieval_multi_task import *
from sklearn.preprocessing import StandardScaler
import csv
from sklearn.metrics import confusion_matrix, f1_score, roc_auc_score, precision_score, recall_score
import matplotlib.pyplot as plt
from loss_functions import *
def deep_getsizeof(o, ids):
d = deep_getsizeof
if id(o) in ids:
return 0
r = getsizeof(o)
ids.add(id(o))
if isinstance(o, str) or isinstance(0, np.unicode):
return r
if isinstance(o, Mapping):
return r + sum(d(k, ids) + d(v, ids) for k, v in o.iteritems())
if isinstance(o, Container):
return r + sum(d(x, ids) for x in o)
return r
# Memory check
def memoryCheck():
ps = subprocess.Popen(['nvidia-smi', '--query-gpu=memory.used,utilization.gpu', '--format=csv'],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
print(ps.communicate(), '\n')
os.system("free -m")
# Free memory
def freeCacheMemory():
torch.cuda.empty_cache()
gc.collect()
# Build dataloaders
def myDataloader(videoFeatures, audioFeatures, labels, labels_vid, labels_aud, args, shuffleBool=False):
class my_dataset(Dataset):
def __init__(self, videoData, audioData, label, label_vid, label_aud):
self.videoData = videoData
self.audioData = audioData
self.label = label
self.label_vid = label_vid
self.label_aud = label_aud
def __getitem__(self, index):
return self.videoData[index], self.audioData[index], self.label[index], self.label_vid[index], \
self.label_aud[index]
def __len__(self):
return len(self.videoData)
# Build dataloaders
my_dataloader = DataLoader(dataset=my_dataset(videoFeatures, audioFeatures, labels, labels_vid, labels_aud),
batch_size=args.batch_size, shuffle=shuffleBool)
return my_dataloader
def myDataloader_retrieval(videoFeatures, audioFeatures, emoValues, args, shuffleBool=False):
class my_dataset(Dataset):
def __init__(self, videoData, audioData, emo):
self.videoData = videoData
self.audioData = audioData
self.emo = emo
def __getitem__(self, index):
return self.videoData[index], self.audioData[index], self.emo[index]
def __len__(self):
return len(self.videoData)
# Build dataloaders
my_dataloader = DataLoader(dataset=my_dataset(videoFeatures, audioFeatures, emoValues), batch_size=args.batch_size,
shuffle=shuffleBool)
return my_dataloader
# Train
def train_func(train_loader, validate_loader, the_model, optimizer, criter, criter_vid, criter_aud, device, n_epochs,
patience):
start_time = time.time()
# to track the training loss as the model trains
train_losses = []
valid_losses = []
# to track the validation loss as the model trains
# to track the average training loss per epoch as the model trains
avg_train_losses = []
# to track the average validation loss per epoch as the model trains
avg_valid_losses = []
# initialize the early_stopping object
early_stopping = EarlyStopping(patience=patience, verbose=True)
for epoch in range(1, n_epochs + 1):
# epoch_acc = 0
# Adjust learning rate
# adjust_learning_rate(optimizer, epoch)
#####################
## train the model ##
#####################
the_model.train() # prep model for training
count_batches = 0
for (video_feature, audio_feature, labels, labels_vid, labels_aud) in train_loader:
video_feature, audio_feature, labels, labels_vid, labels_aud = video_feature.to(device), audio_feature.to(
device), labels.to(device), labels_vid.to(device), labels_aud.to(device)
# clear the gradients of all optimized variables
optimizer.zero_grad()
# forward pass: compute predicted outputs by passing inputs to the model
sim, out_vid, out_aud = the_model.forward(video_feature, audio_feature)
dist = 1.0 - sim
loss = criter(dist, labels.float()) + criter_vid(out_vid, labels_vid) + criter_aud(out_aud, labels_aud)
# backward pass: compute gradient of the loss with respect to model parameters
loss.backward(retain_graph=True)
# perform a single optimization step (parameter update)
optimizer.step()
# epoch_acc += acc.item()
# record training loss
train_losses.append(loss.item())
if (count_batches % 100) == 0:
print('Batch: ', count_batches)
count_batches += 1
# Free catch memory
del video_feature, audio_feature, labels_vid, labels_aud
freeCacheMemory()
######################
# validate the model #
######################
the_model.eval() # prep model for evaluation
# val_epoch_acc = 0
# data, label_for_model, target_disc, target_cont)
for (v_video_feature, v_audio_feature, vLabels, vLabels_vid, vLabels_aud) in validate_loader:
v_video_feature, v_audio_feature, vLabels, vLabels_vid, vLabels_aud = v_video_feature.to(
device), v_audio_feature.to(device), vLabels.to(device), vLabels_vid.to(device), vLabels_aud.to(device)
vsim, vout_vid, vout_aud = the_model(v_video_feature, v_audio_feature)
vdist = 1.0 - vsim
# validation loss:
batch_valid_losses = criter.forward(vdist, vLabels.float()) + criter_vid.forward(vout_vid, vLabels_vid) + criter_aud.forward(vout_aud, vLabels_aud)
valid_losses.append(batch_valid_losses.item())
del v_video_feature, v_audio_feature, vLabels
freeCacheMemory()
# print training/validation statistics
# calculate average loss over an epoch
train_loss = np.average(train_losses)
avg_train_losses.append(train_loss)
valid_loss = np.average(valid_losses)
epoch_len = len(str(n_epochs))
print_msg = (f'[{epoch:>{epoch_len}}/{n_epochs:>{epoch_len}}]' +
f' train_loss: {train_loss:.8f} ' +
f' valid_loss: {valid_loss:.8f} ')
print(print_msg)
# clear lists to track next epoch
train_losses = []
valid_losses = []
# early_stopping needs the loss to check if it has decreased,
# and if it has, it will make a checkpoint of the current model
early_stopping(valid_loss.item(), the_model)
print('Epoch[{}/{}]: Training time: {} seconds '.format(epoch, n_epochs, time.time() - start_time))
start_time = time.time()
if early_stopping.early_stop:
print("Early stopping")
break
# load the last checkpoint with the best model
the_model.load_state_dict(torch.load('checkpoint.pt'))
return the_model, avg_train_losses, avg_valid_losses
# Load extracted features and arousal/valence files
def loadingfiles(feature_file, label_file):
# Load extracted features and arousal .h5 files
print('\n')
print('Loading h5 files containing extracted features......')
loading_time = time.time()
h5file = h5py.File(feature_file, mode='r')
getKey = list(h5file.keys())[0]
getData = h5file.get(getKey)
features = np.asarray(getData)
features = torch.from_numpy(features)
h5file.close()
labelValues = []
labels_vid = []
labels_aud = []
with open(label_file, 'r') as csvfile:
csvReader = csv.reader(csvfile)
for row in csvReader:
labelValues.append(np.int((row[2])))
labels_vid.append(np.int(row[5]))
labels_aud.append(np.int(row[6]))
labelValues = np.asarray(labelValues)
labelValues = torch.from_numpy(labelValues)
labels_vid = np.asarray(labels_vid)
labels_vid = torch.from_numpy(labels_vid)
labels_aud = np.asarray(labels_aud)
labels_aud = torch.from_numpy(labels_aud)
csvfile.close()
return features, labelValues, labels_vid, labels_aud
def loadingfiles_retrieval(feature_file, csv_filename):
print('Loading h5 files containing extracted features......')
loading_time = time.time()
h5file = h5py.File(feature_file, mode='r')
getKey = list(h5file.keys())[0]
getData = h5file.get(getKey)
features = np.asarray(getData)
features = torch.from_numpy(features)
h5file.close()
print('Time for loading extracted features: ', time.time() - loading_time)
all_filenames = []
with open(csv_filename, 'r') as csvfile:
csvReader = csv.reader(csvfile)
for row in csvReader:
all_filenames.append(row[2]) # 1: filename, 2: emotion label
csvfile.close()
return features, all_filenames
def get_audio_video_views(validate_loader, model_path, device):
model = embedding_network().to(device)
model.load_state_dict(torch.load(model_path, map_location=device))
model.eval()
video_view = []
audio_view = []
with torch.no_grad():
for (video_features, audio_features, _) in validate_loader:
video_emb = model.video_projection(model.video_br(video_features))
audio_emb = model.audio_projection(model.audio_br(audio_features))
video_view.append(video_emb)
audio_view.append(audio_emb)
return torch.cat(video_view), torch.cat(audio_view)
def compute_similarity(query, data):
cosine_sim = nn.CosineSimilarity()
similarity = cosine_sim(query.unsqueeze(0), data)
return similarity
def AvgP(y_pred_rank, queries_label, label):
score = 0.0
count = 0.0
lab_rel = list(queries_label).count(label)
for i, p in enumerate(y_pred_rank):
if int(p) == int(label):
count += 1
score += count / (i + 1.0)
if lab_rel == 0:
avgP = 0.0
else:
avgP = (score * 1.0) / lab_rel
return avgP
def prec_rec(RelN, y_pred, queries_label, label):
prec_list = []
rec_list = []
for _id in RelN:
count = 0.0
lab_retrieved = _id
lab_rel = list(queries_label).count(label)
for i, p in enumerate(y_pred[:_id]):
if int(p) == int(label):
count += 1
if lab_retrieved != 0:
prec = (count * 1.0) / lab_retrieved
else:
prec = 0.0
if lab_rel != 0:
rec = (count * 1.0) / lab_rel
else:
rec = 0.0
prec_list.append(prec)
rec_list.append(rec)
return np.asarray(prec_list), np.asarray(rec_list)
def metric(queries, view, queries_label):
Ap_sum_view = 0.0
query_num = queries.shape[0]
prec_all, rec_all = [], []
acc_count_1 = 0
acc_count_3 = 0
acc_count_5 = 0
acc_count_10 = 0
pre_final, rec_final = [], []
for _idx in range(query_num):
label = queries_label[_idx]
sim_vector = compute_similarity(queries[_idx], view)
rank_view_index = torch.argsort(sim_vector, dim=- 1, descending=True)
pred_view_label = [queries_label[index] for index in rank_view_index]
prec_list, rec_list = prec_rec(RelN, pred_view_label, queries_label, label)
AP_view = AvgP(pred_view_label, queries_label, label)
Ap_sum_view += AP_view
prec_all.append(prec_list)
rec_all.append(rec_list)
# TopK
values_top1, indices_top1 = torch.topk(sim_vector, 1) # top1
recommend_label_top1 = [queries_label[idx_top1] for idx_top1 in indices_top1]
values_top3, indices_top3 = torch.topk(sim_vector, 3) # top3
recommend_label_top3 = [queries_label[idx_top3] for idx_top3 in indices_top3]
values_top5, indices_top5 = torch.topk(sim_vector, 5) # top5
recommend_label_top5 = [queries_label[idx_top5] for idx_top5 in indices_top5]
values_top10, indices_top10 = torch.topk(sim_vector, 10) # top10
recommend_label_top10 = [queries_label[idx_top10] for idx_top10 in indices_top10]
if label in recommend_label_top1:
acc_count_1 += 1
if label in recommend_label_top3:
acc_count_3 += 1
if label in recommend_label_top5:
acc_count_5 += 1
if label in recommend_label_top10:
acc_count_10 += 1
mAp_view = float("{:.5f}".format((Ap_sum_view * 1.0) / query_num))
print("mAP_view={}".format(mAp_view))
prec_all, rec_all = np.array(prec_all), np.array(rec_all)
[pre_final.append(np.mean(prec_all[:, i])) for i in range(prec_all.shape[1])]
[rec_final.append(np.mean(rec_all[:, i])) for i in range(rec_all.shape[1])]
print("accuracy_top1 (%): ", acc_count_1 / len(queries_label) * 100)
print("accuracy_top3 (%): ", acc_count_3 / len(queries_label) * 100)
print("accuracy_top5 (%): ", acc_count_5 / len(queries_label) * 100)
#print("accuracy_top10 (%): ", acc_count_10 / len(queries_label) * 100)
return mAp_view, pre_final, rec_final
def plot_precsion_recall_retrieval_task(rec, prec, query2retrieval=""):
# Read this: https://ils.unc.edu/courses/2013_spring/inls509_001/lectures/10-EvaluationMetrics.pdf => Note: When plotting a PR curve, we use the best precision for a level of recall or greater!
rec_np = np.array(rec)
prec_np = np.array(prec)
indices = np.argsort(-prec_np) # decreaing order
new_prec_np = [prec_np[id] for id in indices]
new_rec_np = [rec_np[id] for id in indices]
init = new_rec_np[0]
get_rec = []
get_prec = []
for i in range(1, len(new_rec_np)):
if new_rec_np[i] > init:
get_rec.append(new_rec_np[i])
get_prec.append(new_prec_np[i])
init = new_rec_np[i]
plt.plot(get_rec, get_prec, label=query2retrieval + " audio-visual retrieval")
# plt.plot(rec_cca_va, prec_cca_va, label="CCA")
plt.title('')
plt.xlabel('Recall', fontsize=14)
plt.ylabel('Precision', fontsize=14)
leg = plt.legend(bbox_to_anchor=(0.65, 1), ncol=1, mode=None, shadow=True, fancybox=True)
leg.get_frame().set_alpha(0.65)
plt.grid(True)
# plt.savefig("./DS1_retrieval.png")
plt.show()
# Main
def main(args):
# Device configuration
use_cuda = not args.no_cuda and torch.cuda.is_available()
# Manual seed
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
print('Device: ', device)
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
# Data
# for model training
video_train_features, train_labelValues, train_labelValues_vid, train_labelValues_aud = loadingfiles(
video_feature_file_train, label_file_train)
audio_train_features, _, _, _ = loadingfiles(audio_feature_file_train, label_file_train)
memoryCheck()
video_val_features, val_labelValues, val_labelValues_vid, val_labelValues_aud = loadingfiles(
video_feature_file_validate, label_file_validate)
audio_val_features, _, _, _ = loadingfiles(audio_feature_file_validate, label_file_validate)
# standardize:
scaler_1 = StandardScaler()
video_train_features = torch.from_numpy(scaler_1.fit_transform(video_train_features)).float()
video_val_features = torch.from_numpy(scaler_1.transform(video_val_features)).float()
scaler_2 = StandardScaler()
audio_train_features = torch.from_numpy(scaler_2.fit_transform(audio_train_features)).float()
audio_val_features = torch.from_numpy(scaler_2.transform(audio_val_features)).float()
memoryCheck()
train_dataset = myDataloader(video_train_features, audio_train_features, train_labelValues, train_labelValues_vid,
train_labelValues_aud, args, True)
validate_dataset = myDataloader(video_val_features, audio_val_features, val_labelValues, val_labelValues_vid,
val_labelValues_aud, args, False)
memoryCheck()
# ------------------------------------------------------------------------------------------------
# input_size for the model
video_dim = video_train_features.shape[1]
audio_dim = audio_train_features.shape[1]
m_start_time = time.time()
# Build the model
model = embedding_network(video_dim, audio_dim).to(device)
model = model.to(device)
memoryCheck()
# Loss and optimizer
# Cross Entropy Loss
criterion = ContrastiveLoss()
criterion_video = nn.CrossEntropyLoss()
criterion_audio = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), args.lr, weight_decay=args.wd)
model, train_losses, valid_losses = train_func(train_dataset, validate_dataset, model, optimizer, criterion,
criterion_video, criterion_audio, device, args.num_epochs,
args.patience)
print('Training time: ', time.time() - m_start_time)
# save model
saved_model = "_DS1_model_retrieval_multi_task.pth"
torch.save(model.state_dict(), os.path.join(args.model_path, saved_model))
print("Saved the best model!")
# Find matches
print("FOR TESTING: ")
retrieval_video_test_features, retrieval_test_labelValues = loadingfiles_retrieval(video_feature_retrieval_test,
label_retrieval_test)
retrieval_audio_test_features, _ = loadingfiles_retrieval(audio_feature_retrieval_test, label_retrieval_test)
retrieval_video_test_features = torch.from_numpy(scaler_1.transform(retrieval_video_test_features)).float()
retrieval_audio_test_features = torch.from_numpy(scaler_2.transform(retrieval_audio_test_features)).float()
retrieval_test_dataset = myDataloader_retrieval(retrieval_video_test_features, retrieval_audio_test_features,
retrieval_test_labelValues, args, False)
vid_view, aud_view = get_audio_video_views(retrieval_test_dataset, os.path.join(args.model_path, saved_model),
device)
print("Video query => Retrieve music: ")
vid2aud_mAP, vid2aud_precision_list, vid2aud_recall_list = metric(vid_view, aud_view, retrieval_test_labelValues)
print("Music query => Retrieve videos: ")
aud2vid_mAP, aud2vid_precision_list, aud2vid_recall_list = metric(aud_view, vid_view, retrieval_test_labelValues)
plot_precsion_recall_retrieval_task(vid2aud_recall_list, vid2aud_precision_list, query2retrieval="Video to music:")
plot_precsion_recall_retrieval_task(aud2vid_recall_list, aud2vid_precision_list, query2retrieval="Music to video:")
#os.remove('./checkpoint.pt')
if __name__ == "__main__":
dir_path = "./DS1_EmoMV_A" # path to extracted features
model_path = os.path.join(dir_path, 'models') # path to save models => rember to create this folder
pred_path = os.path.join(dir_path, 'predicted_values') # path to save predicted values => rember to create this folder
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str, default=model_path, help='path for saving trained models')
parser.add_argument('--num_epochs', type=int, default=1000)
parser.add_argument('--patience', type=int, default=20,
help='early stopping patience; how long to wait after last time validation loss improved')
parser.add_argument('--batch_size', type=int, default=256, help='number of feature vectors loaded per batch')
parser.add_argument('--lr', type=float, default=0.0001, metavar='LR', help='initial learning rate')
parser.add_argument('--wd', type=float, default=0.1, help='weight decay')
# parser.add_argument('--mm', type=float, default=0.9, help='momentum')
parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 123)')
args = parser.parse_args()
print(args)
# for training
label_file_train = os.path.join(dir_path + "/" + "annotation", "DS1_TRAIN_MATCH_MISMATCH_labels.csv")
video_feature_file_train = os.path.join(dir_path + "/" + "extracted_features", "SlowFast_DS1_TRAIN_MATCH_MISMATCH.h5")
audio_feature_file_train = os.path.join(dir_path + "/" + "extracted_features", "VGGish_DS1_TRAIN_MATCH_MISMATCH.h5")
# for validation
label_file_validate = os.path.join(dir_path + "/" + "annotation", "DS1_VAL_MATCH_MISMATCH_labels.csv")
video_feature_file_validate = os.path.join(dir_path + "/" + "extracted_features", "SlowFast_DS1_VAL_MATCH_MISMATCH.h5")
audio_feature_file_validate = os.path.join(dir_path + "/" + "extracted_features", "VGGish_DS1_VAL_MATCH_MISMATCH.h5")
# for testing
dir_path_retrieval = "./DS1_EmoMV_A"
label_retrieval_test = os.path.join(dir_path_retrieval + "/" + "for_retrieval", "DS1_from_MVED_test_set_5_classes_for_retrieval.csv")
video_feature_retrieval_test = os.path.join(dir_path_retrieval + "/" + "for_retrieval", "SlowFast_DS1_from_MVED_test_set_5_classes_for_retrieval.h5")
audio_feature_retrieval_test = os.path.join(dir_path_retrieval + "/" + "for_retrieval", "VGGish_DS1_from_MVED_test_set_5_classes_for_retrieval.h5")
# -------------------------------------------------------------------------------------------------------------------
main_start_time = time.time()
lbl_range = ["Mismatched", "Matched"] # mismatched: 0, matched: 1
RelN = [i for i in range(1, 250)] # for EmoMV-B, EmoMV-C, remember to update this number
main(args)
print('Total running time: {:.5f} seconds'.format(time.time() - main_start_time))