-
Notifications
You must be signed in to change notification settings - Fork 3
/
dln_glam_prepare.py
513 lines (438 loc) · 21.2 KB
/
dln_glam_prepare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
import argparse
import io
import json
import logging
import multiprocessing
import os
import pickle
import sys
import time
from collections import defaultdict
from typing import Mapping, Optional, Any, Iterable
import networkx as nx
import numpy as np
import psutil
import torch
import torch.nn.functional as F
import torch_geometric
from PIL import Image, ImageDraw
from scipy.spatial import ConvexHull
from shapely.geometry import Polygon, box
from torch_geometric.data import Data
from tqdm import tqdm
from tqdm.contrib.logging import logging_redirect_tqdm
from GLAM.common import PageNodes, PageEdges, TextNode, ImageNode
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
# logger.addHandler(logging.StreamHandler())
CLASSES_MAP = {
0: "Unknown",
1: "Caption",
2: "Footnote",
3: "Formula",
4: "List-item",
5: "Page-footer",
6: "Page-header",
7: "Picture",
8: "Section-header",
9: "Table",
10: "Text",
11: "Title",
}
def iou(polygon1: Polygon, polygon2: Polygon) -> float:
"""Calculate intersection over union between two polygons. May return NaN if polygons are invalid."""
intersection = polygon1.intersection(polygon2).area
union = polygon1.union(polygon2).area
iou = intersection / union
return iou
# # @lru_cache(maxsize=1)
# def compare_segmentations(segmentations1, segmentations2):
# """Function to compare segmentations and return a similarity score"""
# if not segmentations1 or not segmentations2:
# return 0 # No segmentations to compare
#
# max_similarity = 0
# for seg1 in segmentations1:
# polygon1 = Polygon([(seg1[i], seg1[i + 1]) for i in range(0, len(seg1), 2)])
# for seg2 in segmentations2:
# polygon2 = Polygon([(seg2[i], seg2[i + 1]) for i in range(0, len(seg2), 2)])
# max_similarity = max(max_similarity, compare_polygons(polygon1, polygon2))
#
# return max_similarity
class DLNDataset(torch_geometric.data.Dataset):
index_to_example_filename: Mapping[int, str]
def __init__(self, root, split_name, transform=None, pre_transform=None):
super().__init__(root, transform, pre_transform)
self.split_name = split_name
image_id_to_example_filename = {
int(filename.split(".")[0]): filename
for filename in os.listdir(os.path.join(self.root, split_name))
}
self.index_to_example_filename = {
i: image_id_to_example_filename[image_id]
for i, image_id in enumerate(sorted(image_id_to_example_filename))
}
# @property
# def raw_file_names(self):
# return ['some_file_1', 'some_file_2', ...]
@property
def processed_file_names(self):
return tuple(self.index_to_example_filename.values())
#
# def download(self):
# # Download to `self.raw_dir`.
# path = download_url(url, self.raw_dir)
# ...
#
# def process(self):
# idx = 0
# for raw_path in self.raw_paths:
# # Read data from `raw_path`.
# data = Data(...)
#
# if self.pre_filter is not None and not self.pre_filter(data):
# continue
#
# if self.pre_transform is not None:
# data = self.pre_transform(data)
#
# torch.save(data, osp.join(self.processed_dir, f'data_{idx}.pt'))
# idx += 1
def len(self):
return len(self.processed_file_names)
def get_filepath(self, idx):
example_filename = self.index_to_example_filename[idx]
return os.path.join(self.root, self.split_name, example_filename)
def get(self, idx):
example = torch.load(self.get_filepath(idx))
# assert example.node_features.isfinite().all()
# assert example.edge_features.isfinite().all()
return example
def process_row(dataset_dir, output_dir, split_name, image_id) -> Optional[Data]:
id_dir = os.path.join(dataset_dir, split_name, "by-id", str(image_id))
pdf_filepath = os.path.join(id_dir, "page.pdf")
image_filepath = os.path.join(id_dir, "image.webp")
row_filepath = os.path.join(id_dir, "row.json")
annotations_filepath = os.path.join(id_dir, "annotations.json")
page_dict_filepath = os.path.join(id_dir, "page_dict.pkl")
with open(row_filepath, "rb") as f:
row = json.load(f)
with open(annotations_filepath, "rb") as f:
annotations = json.load(f)
with open(page_dict_filepath, "rb") as f:
page_dict = pickle.load(f)
# with open(image_filepath, "rb") as f:
# image = Image.open(f).convert("L").convert("RGBA")
nodes = PageNodes()
for block in page_dict["blocks"]:
if block["type"] == 0:
for line in block["lines"]:
for span in line["spans"]:
nodes.append(TextNode.from_span(span))
elif block["type"] == 1:
try:
nodes.append(ImageNode.from_page_block(block))
except ValueError as e:
logger.warning(f"{split_name}/{image_id}: Could not parse image block {block}: {e}")
else:
raise ValueError(f"{split_name}/{image_id}: Unknown block type {block['type']}")
if len(nodes) <= 0:
logger.warning(f"{split_name}/{image_id}: Skipping: No nodes found")
return
if len(nodes) == 1:
logger.warning(f"{split_name}/{image_id}: Skipping: Only one node found, cannot make edges")
return
if len(nodes) > 1024:
logger.warning(f"{split_name}/{image_id}: Skipping: Too many nodes ({len(nodes)}), slow to process")
return
edges = PageEdges.from_page_nodes_by_directions(nodes, k=31)
# edges = PageEdges.from_page_nodes_by_top_closest(nodes, k=4+1)
segmentations: list[Polygon] = [
Polygon([
(segmentation[i1], segmentation[i1 + 1])
for i1 in range(0, len(segmentation), 2)
])
for annotation in annotations
for segmentation in annotation["segmentation"]
]
# Calculate probabilities for each class for each node. This is a target for the node classification model.
node_probs = torch.zeros(len(nodes), len(CLASSES_MAP), dtype=torch.float32)
node_segmentations: dict[int, list[int]] = {} # Mapping from node index to a list of segmentation indices
uncovered_segmentations = set(range(len(segmentations))) # Set of uncovered segmentations for cleaning dataset
for node_i, node in enumerate(nodes):
# Get bounding box
node_bbox = box(node.bbox_min_x, node.bbox_min_y, node.bbox_max_x, node.bbox_max_y)
if node_bbox.area <= 0:
logger.warning(f"{split_name}/{image_id}: Node {node} has zero area.")
continue
# Iterate over the segmentations
segmentation_i = 0
for annotation in annotations:
for _ in annotation["segmentation"]:
overlap_area = segmentations[segmentation_i].intersection(node_bbox).area
if overlap_area > 0:
# Weighted votes by the proportion of overlap
node_probs[node_i][annotation["category_id"]] += overlap_area / node_bbox.area
node_segmentations.setdefault(node_i, []).append(segmentation_i)
uncovered_segmentations.discard(segmentation_i)
segmentation_i += 1
# Normalize node_probs by the number of segmentations for each node
node_probs /= torch.tensor([len(node_segmentations.get(node_i, [None])) for node_i in range(len(nodes))], dtype=torch.float32).unsqueeze(1)
# if node_probs.max() < 0.95:
# logger.debug(f"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!11")
# logger.debug(f"node_probs: {node_probs.min():.2f}, {node_probs.max():.2f}, {node_probs.mean():.2f}, {node_probs.std():.2f}")
unlabelled_nodes = [node_i for node_i, node in enumerate(nodes) if node_i not in node_segmentations]
# # Debug draw
# if unlabelled_nodes or uncovered_segmentations:
# logger.warning(f"pdf_filepath: {pdf_filepath}, unlabelled_nodes: {unlabelled_nodes}, uncovered_segmentations: {uncovered_segmentations}")
# # Render page
# #image = Image.open(io.BytesIO(data["image"]["bytes"])).convert("L").convert("RGBA")
# overlay = Image.new("RGBA", image.size, (0, 0, 0, 0))
# draw = ImageDraw.Draw(overlay)
#
# # Render segmentation
# for annotation in annotations:
# segmentation = annotation["segmentation"][0]
# segmentation_polygon = Polygon((
# (segmentation[i], segmentation[i + 1])
# for i in range(0, len(segmentation), 2)
# ))
# draw.polygon(segmentation_polygon.exterior.coords, fill=(200, 200, 200, 200), outline="magenta", width=4)
# # area = segmentation_polygon.intersection(node_bbox).area
# # print("area:", area, "node_bbox.area:", node_bbox.area, "area / node_bbox.area:", area / node_bbox.area)
#
# image = Image.alpha_composite(image, overlay)
# draw = ImageDraw.Draw(image)
#
# # Render bad nodes
# for node_i in nodes:
# outline = "green" if isinstance(node_i, TextNode) else "blue"
# draw.rectangle((node_i.bbox_min_x, node_i.bbox_min_y, node_i.bbox_max_x, node_i.bbox_max_y), outline=outline, width=1)
# for node_i in unlabelled_nodes:
# outline = "red" if isinstance(node_i, TextNode) else "orange"
# draw.rectangle((node_i.bbox_min_x, node_i.bbox_min_y, node_i.bbox_max_x, node_i.bbox_max_y), outline=outline, width=1)
#
# image.show()
# print("showing", len(unlabelled_nodes) / len(nodes))
# # breakpoint()
# # time.sleep(3)
if len(unlabelled_nodes) >= 5:
logger.warning(f"{split_name}/{image_id}: Skipping: Too many # unlabelled nodes ({len(unlabelled_nodes)}, {len(unlabelled_nodes) / len(nodes):.2f}%)")
return
if len(unlabelled_nodes) >= 3 and len(unlabelled_nodes) / len(nodes) > 0.05:
logger.warning(f"{split_name}/{image_id}: Skipping: Too many % unlabelled nodes ({len(unlabelled_nodes)}, {len(unlabelled_nodes) / len(nodes):.2f}%)")
return
node_features = nodes.to_node_features()
edge_index = edges.to_edge_index().t()
edge_features = edges.to_edge_features()
# Calculate probability of same segmentation for each edge. This is a target for the edge classification model.
edge_probs = torch.zeros(edge_index.shape[1])
edge_connections: dict[int, list[tuple[int, int]]] = {} # Mapping from edge index to a list of (segmentation_i1, segmentation_i2) tuples
def precompute_iou(polygons):
n = len(polygons)
ious = np.zeros((n, n))
for i in range(n):
ious[i, i] = 1
for j in range(i + 1, n):
ious[i, j] = ious[j, i] = iou(polygons[i], polygons[j])
return ious
segmentation_ious = precompute_iou(segmentations)
# Iterate over the edges to label them
for k in range(edge_index.shape[1]):
src_node_i = edge_index[0, k].item()
dst_node_i = edge_index[1, k].item()
# Get segmentations for both nodes
src_node_segmentations = node_segmentations.get(src_node_i, [])
dst_node_segmentations = node_segmentations.get(dst_node_i, [])
# Calculate similarity between segmentations
for src_node_segmentation in src_node_segmentations:
for dst_node_segmentation in dst_node_segmentations:
segmentation_iou = segmentation_ious[src_node_segmentation, dst_node_segmentation].item()
if segmentation_iou > 0:
edge_probs[k] += segmentation_iou
edge_connections.setdefault(k, []).append((src_node_segmentation, dst_node_segmentation))
# Normalize edge_probs
edge_probs /= torch.tensor([len(edge_connections.get(k, [None])) for k in range(edge_index.shape[1])], dtype=torch.float32)
# logger.debug(f"edge_probs: {edge_probs.min():.2f}, {edge_probs.max():.2f}, {edge_probs.mean():.2f}, {edge_probs.std():.2f}")
example = Data(
split_name=split_name, # metadata
image_id=image_id, # metadata
node_features=node_features, # input
edge_index=edge_index, # input
edge_features=edge_features, # input
node_probs=node_probs, # target
edge_probs=edge_probs, # target
)
#########################################
# Calculate mAP@IoU[0.5:0.95:0.05]
#########################################
# def single_image_evaluation(bbox_preds, class_preds, bbox_gts, class_gts, iou_threshold):
# """Evaluate a single image for precision and recall at a specific IoU threshold."""
# tp = 0
# fp = 0
# gt_used = [False] * len(bbox_gts)
# for bbox_pred, class_pred in zip(bbox_preds, class_preds):
# matched = False
# for i, (bbox_gt, class_gt) in enumerate(zip(bbox_gts, class_gts)):
# if gt_used[i] or class_pred != class_gt:
# continue
# if iou(bbox_pred, bbox_gt) >= iou_threshold:
# gt_used[i] = True
# tp += 1
# matched = True
# break
# if not matched:
# fp += 1
#
# fn = sum(1 for used in gt_used if not used)
# precision = tp / (tp + fp) if (tp + fp) > 0 else 0
# recall = tp / (tp + fn) if (tp + fn) > 0 else 0
# return precision, recall
#
# def mean_average_precision(bbox_preds, class_preds, bbox_gts, class_gts, iou_thresholds: Iterable[float] = np.arange(0.5, 1, 0.05)):
# """Calculate the mean Average Precision over a range of IoU thresholds."""
# average_precisions = []
# for iou_threshold in iou_thresholds:
# precisions = []
# recalls = []
# # for preds, gts in zip(predictions, ground_truths):
# for bbox_pred, class_pred, bbox_gt, class_gt in zip(bbox_preds, class_preds, bbox_gts, class_gts):
# precision, recall = single_image_evaluation(bbox_preds, class_preds, bbox_gts, class_gts, iou_threshold)
# precisions.append(precision)
# recalls.append(recall)
# ap = np.mean(precisions) # Average precision for this IoU threshold
# average_precisions.append(ap)
# return np.mean(average_precisions) # Mean over all IoU thresholds
# edge_prob_threshold = 0.5
# graph = nx.Graph()
# for k in range(example.edge_index.shape[1]):
# src_node_i = example.edge_index[0, k].item()
# dst_node_i = example.edge_index[1, k].item()
# edge_prob = example.edge_probs[k].item()
#
# if edge_prob >= edge_prob_threshold:
# graph.add_edge(src_node_i, dst_node_i, weight=edge_prob)
# else:
# graph.add_node(src_node_i)
# graph.add_node(dst_node_i)
#
# clusters: list[set[int]] = list(nx.connected_components(graph))
# # cluster_min_spanning_boxes: list[Polygon] = [
# # Polygon([
# # (min(nodes[node_i].bbox_min_x for node_i in cluster), min(nodes[node_i].bbox_min_y for node_i in cluster)),
# # (max(nodes[node_i].bbox_max_x for node_i in cluster), min(nodes[node_i].bbox_min_y for node_i in cluster)),
# # (max(nodes[node_i].bbox_max_x for node_i in cluster), max(nodes[node_i].bbox_max_y for node_i in cluster)),
# # (min(nodes[node_i].bbox_min_x for node_i in cluster), max(nodes[node_i].bbox_max_y for node_i in cluster)),
# # ])
# # for cluster in clusters
# # ]
# cluster_classes: list[int] = torch.stack([example.node_probs[torch.tensor(list(cluster))].sum(dim=0) for cluster in clusters]).argmax(dim=1).tolist()
#
# node_class_accuracy = 0
# for cluster, cluster_class in zip(clusters, cluster_classes):
# for node_index in cluster:
# node_class = example.node_probs[node_index].argmax().item()
# if node_class == cluster_class:
# node_class_accuracy += 1
# node_class_accuracy /= len(nodes)
# logger.debug(f"{split_name}/{image_id}: node_class_accuracy: {node_class_accuracy:.2f}, len(unlabelled_nodes): {len(unlabelled_nodes)}, len(nodes): {len(nodes)}, len(uncovered_segmentations): {len(uncovered_segmentations)}, len(annotation): {len(annotations)}, len(segmentations): {len(segmentations)}, len(clusters): {len(clusters)}")
# # Render page
# if node_class_accuracy < 0.98:
# draw = ImageDraw.Draw(image)
#
# # for annotation in annotations:
# # for segmentation in annotation["segmentation"]:
# # draw.polygon(segmentation, outline=(0, 0, 255), width=6)
#
# for cluster, cluster_class in zip(clusters, cluster_classes):
# cluster_bbox = (
# min(example.node_features[node_i][2] for node_i in cluster),
# min(example.node_features[node_i][3] for node_i in cluster),
# max(example.node_features[node_i][4] for node_i in cluster),
# max(example.node_features[node_i][5] for node_i in cluster),
# )
# draw.rectangle(cluster_bbox, outline=(0, 255, 0), width=3)
# draw.text(cluster_bbox[:2], CLASSES_MAP[cluster_class], fill=(0, 0, 0))
#
# # for k, node_features in zip(range(example.node_features.size(0)), example.node_features):
# # node_bbox = (node_features[2], node_features[3], node_features[4], node_features[5])
# # draw.rectangle(node_bbox, outline=(255, 0, 0), width=1)
# #
# # for annotation in annotations:
# # for segmentation in annotation["segmentation"]:
# # draw.text(segmentation, CLASSES_MAP[annotation["category_id"]], fill=(0, 0, 0))
#
# logger.debug(f"{split_name}/{image_id}: node_class_accuracy: {node_class_accuracy}")
# image.show(title=f"{split_name}/{image_id}")
# breakpoint()
return example
def process(dataset_dir, output_dir, split_name, image_id) -> tuple[Optional[Data], Any]:
return process_row(dataset_dir, output_dir, split_name, image_id), (dataset_dir, output_dir, split_name, image_id)
def main():
parser = argparse.ArgumentParser("DocLayNet dataset")
parser.add_argument("--dataset-path", type=str, default="/home/i/dataset/DocLayNet/raw/DocLayNet/DATA",
help="Directory for the raw dataset (default: %(default)s)")
parser.add_argument("--output-path", type=str, default="/home/i/dataset/DocLayNet/glam",
help="Directory for the processed dataset (default: %(default)s)")
args = parser.parse_args()
split_names = ["train", "test", "val"]
# split_names = ["val"]
split_image_ids = {}
for split_name in split_names:
image_ids = os.listdir(os.path.join(args.dataset_path, split_name, "by-id"))
image_ids = [int(x.split(".")[0]) for x in image_ids]
image_ids = sorted(image_ids)
split_image_ids[split_name] = image_ids
num_processes = psutil.cpu_count(logical=False)
# num_processes = 1
logger.debug(f"Using {num_processes} processes.")
tasks_in_pool = 0
max_tasks_in_pool = 100 + num_processes
pbar = tqdm(desc=f"Processing...", total=sum(len(image_ids) for image_ids in split_image_ids.values()), smoothing=0.001, position=0, leave=False)
with logging_redirect_tqdm(), multiprocessing.Pool(num_processes) as pool:
def callback(result):
nonlocal tasks_in_pool
tasks_in_pool -= 1
pbar.update(1)
example, context = result
dataset_dir, output_path, split_name, image_id = context
if not example:
return
assert example.node_features.isfinite().all()
assert example.edge_features.isfinite().all()
example_filepath = os.path.join(output_path, f'{image_id}.pt')
torch.save(example, example_filepath)
def my_error_callback(e):
nonlocal tasks_in_pool
tasks_in_pool -= 1
pbar.update(1)
# logger.exception(e)
for split_name in split_names:
output_path = os.path.join(args.output_path, split_name)
os.makedirs(output_path, exist_ok=True)
image_ids = split_image_ids[split_name]
for image_id in image_ids:
example_filepath = os.path.join(output_path, f'{image_id}.pt')
if os.path.exists(example_filepath):
pbar.update(1)
# pbar.total -= 1
continue
while tasks_in_pool >= max_tasks_in_pool:
time.sleep(0.1)
tasks_in_pool += 1
pool.apply_async(process, args=(args.dataset_path, output_path, split_name, image_id), callback=callback, error_callback=my_error_callback)
# callback(process(args.dataset_path, output_path, split_name, image_id))
while tasks_in_pool > 0:
pbar.refresh()
print("Tasks in pool:", tasks_in_pool)
print("Waiting for following tasks:")
# print(pool._cache)
print(pool._taskqueue)
time.sleep(1)
pool.close()
pool.join()
pbar.refresh()
pbar.close()
print("Done.")
if __name__ == '__main__':
main()