forked from dantros/grafica
-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathex_cpu_transforms.py
149 lines (103 loc) · 4.13 KB
/
ex_cpu_transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# coding=utf-8
"""Transforming vertices in the CPU to create shapes."""
import glfw
from OpenGL.GL import *
import OpenGL.GL.shaders
import numpy as np
import sys
import os.path
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import grafica.transformations as tr
import grafica.basic_shapes as bs
import grafica.easy_shaders as es
__author__ = "Daniel Calderon"
__license__ = "MIT"
# We will use 32 bits data, so an integer has 4 bytes
# 1 byte = 8 bits
SIZE_IN_BYTES = 4
# A class to store the application control
class Controller:
fillPolygon = True
# we will use the global controller as communication with the callback function
controller = Controller()
def on_key(window, key, scancode, action, mods):
if action != glfw.PRESS:
return
global controller
if key == glfw.KEY_SPACE:
controller.fillPolygon = not controller.fillPolygon
elif key == glfw.KEY_ESCAPE:
glfw.set_window_should_close(window, True)
else:
print('Unknown key')
def createShape():
"""
Generating a circle, where the vertices at the border are generated via matrix
transformations.
"""
# Adding the vertex at the center, white color to identify it
# position color
vertices = [ 0.0, 0.0, 0.0, 1.0, 1.0, 1.0]
indices = []
# This vector will be used as reference to be transformed
xt = np.array([1,0,0,1])
# We iterate generating vertices over the circle border
for i in range(0,30):
# attempt 1: modifying manually each vertex.
# positions colors
#vertices += [r * np.cos(0.1 *i * np.pi), r * np.sin(0.1 *i * np.pi), 0.0, 1,0,0]
# attempt 2: using matrix transformations
transformation = tr.rotationZ(0.1 *i * np.pi)
xtp = np.matmul(transformation, xt)
# returning to cartesian coordinates from homogeneous coordinates
xtr = np.array([xtp[0], xtp[1], xtp[2]]) / xtp[3]
# Adding the new vertex in clue color
# position color
vertices += [xtr[0], xtr[1], xtr[2], 0.0, 0.0, 1.0]
# do not forget the indices!
indices += [0, i+1, i+2]
# removing the last spare vertex
indices.pop()
return bs.Shape(vertices, indices)
if __name__ == "__main__":
# Initialize glfw
if not glfw.init():
glfw.set_window_should_close(window, True)
width = 600
height = 600
window = glfw.create_window(width, height, "Transforming vertices in the CPU", None, None)
if not window:
glfw.terminate()
glfw.set_window_should_close(window, True)
glfw.make_context_current(window)
# Connecting the callback function 'on_key' to handle keyboard events
glfw.set_key_callback(window, on_key)
# Creating our shader program and telling OpenGL to use it
pipeline = es.SimpleTransformShaderProgram()
glUseProgram(pipeline.shaderProgram)
# Setting up the clear screen color
glClearColor(0.15, 0.15, 0.15, 1.0)
# Creating shapes on GPU memory
shape = createShape()
gpuShape = es.GPUShape().initBuffers()
pipeline.setupVAO(gpuShape)
gpuShape.fillBuffers(shape.vertices, shape.indices, GL_STATIC_DRAW)
# We do not need to update the transform in every frame, so we can do it here
transform = tr.translate(0,-0.5,0)
glUniformMatrix4fv(glGetUniformLocation(pipeline.shaderProgram, "transform"), 1, GL_TRUE, transform)
while not glfw.window_should_close(window):
# Using GLFW to check for input events
glfw.poll_events()
# Filling or not the shapes depending on the controller state
if (controller.fillPolygon):
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL)
else:
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE)
# Clearing the screen and drawing
glClear(GL_COLOR_BUFFER_BIT)
pipeline.drawCall(gpuShape)
# Once the drawing is rendered, buffers are swap so an uncomplete drawing is never seen.
glfw.swap_buffers(window)
# freeing GPU memory
gpuShape.clear()
glfw.terminate()