Data source: ImageNet
Image resolution: 709 x 510
Model | Python API |
---|---|
shufflenetv2 | 0.5396927 piggy bank, penny bank 0.0453512 saltshaker, salt shaker 0.0443007 whistle 0.0347720 ocarina, sweet potato 0.0286027 lemon |
squeezenet | 0.9628906 Granny Smith 0.0068016 lemon 0.0064964 fig 0.0046844 tennis ball 0.0038204 piggy bank, penny bank |
Data source: ImageNet
Image resolution: 500 x 500
Model | Python API |
---|---|
shufflenetv2 | 0.9906778 junco, snowbird 0.0034630 brambling, Fringilla montifringilla 0.0023069 house finch, linnet, Carpodacus mexicanus 0.0017143 chickadee 0.0006609 goldfinch, Carduelis carduelis |
squeezenet | 0.9804688 junco, snowbird 0.0173798 chickadee 0.0005875 jay 0.0003612 indigo bunting, indigo finch, indigo bird, Passerina cyanea 0.0003293 brambling, Fringilla montifringilla |
Data source: ImageNet
Image resolution: 333 x 500
Model | Python API |
---|---|
shufflenetv2 | 0.2229400 breakwater, groin, groyne, mole, bulwark, seawall, jetty 0.2029892 liner, ocean liner 0.0577048 fireboat 0.0493575 dock, dockage, docking facility 0.0428826 container ship, containership, container vessel |
squeezenet | 0.8725586 lifeboat 0.0500183 container ship, containership, container vessel 0.0284729 drilling platform, offshore rig 0.0120697 pirate, pirate ship 0.0110016 dock, dockage, docking facility |
Data source: ImageNet
Image resolution: 500 x 500
Bounding box (upper left and bottom right corners):(117, 86), (365, 465)
Model | Python API |
---|---|
faster_rcnn | Bounding box: (58, 141), (359, 484) |
mobilenet_ssd | Bounding box: (94, 93), (359, 481) |
mobilenetv2_ssdlite | Bounding box: (76, 100), (347, 460) |
mobilenetv3_ssdlite | Bounding box: (61, 86), (365, 498) |
mobilenet_yolov2 | Bounding box: (72, 101), (341, 466) |
mobilenetv2_yolov3 | Bounding box: (84, 92), (354, 473) |
rfcn | Bounding box: (93, 99), (334, 445) |
squeezenet_ssd | Bounding box: (98, 103), (350, 449) |
yolov4_tiny | Bounding box: (74, 85), (243, 425) |
yolov5s | Bounding box: (68, 96), (355, 490) |
yolov8s | Bounding box: (59, 100), (352, 447) |
Data source: ImageNet
Image resolution: 333 x 500
Bounding box (upper left and bottom right corners):(82, 262), (269, 376)
Model | Python API |
---|---|
faster_rcnn | Bounding box: (58, 180), (282, 418) |
mobilenet_ssd | Bounding box: (79, 140), (270, 375) |
mobilenetv2_ssdlite | Bounding box: (82, 265), (267, 376) |
mobilenetv3_ssdlite | Bounding box: (59, 112), (295, 414) |
mobilenet_yolov2 | Bounding box: (54, 139), (277, 375) |
mobilenetv2_yolov3 | Bounding box: (75, 127), (276, 390) |
rfcn | Bounding box: (88, 138), (259, 381) |
squeezenet_ssd | Bounding box: (78, 149), (260, 357) |
yolov4_tiny | Bounding box: (96, 265), (244, 371) |
yolov5s | Bounding box: (81, 249), (267, 377) |
yolov8s | Bounding box: (82, 242), (269, 378) |
Data source: Pascal VOC
Image resolution: 500 x 375
Bounding box (upper left and bottom right corners):(62, 127), (443, 251)
Model | Python API |
---|---|
faster_rcnn | Bounding box: (6, 94), (477, 257) |
mobilenet_ssd | Bounding box: (54, 128), (447, 244) |
mobilenetv2_ssdlite | Bounding box: (61, 128), (435, 238) |
mobilenetv3_ssdlite | Bounding box: (37, 105), (295, 414) |
mobilenet_yolov2 | Bounding box: (59, 112), (433, 239) |
mobilenetv2_yolov3 | Bounding box: (62, 124), (427, 241) |
rfcn | Bounding box: (46, 102), (436, 252) |
squeezenet_ssd | Bounding box: (47, 118), (458, 248) |
yolov4_tiny | Bounding box: (55, 124), (427, 241) |
yolov5s | Bounding box: (41, 118), (441, 245) |
yolov8s | Bounding box: (58, 122), (434, 243) |