-
Notifications
You must be signed in to change notification settings - Fork 1
/
metafile.yml
115 lines (114 loc) · 4.52 KB
/
metafile.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
Collections:
- Name: SimMIM
Metadata:
Training Data: ImageNet-1k
Training Techniques:
- AdamW
Training Resources: 16x A100 GPUs
Architecture:
- Swin
Paper:
Title: 'SimMIM: A Simple Framework for Masked Image Modeling'
URL: https://arxiv.org/abs/2111.09886
README: configs/simmim/README.md
Models:
- Name: simmim_swin-base-w6_8xb256-amp-coslr-100e_in1k-192px
Metadata:
Epochs: 100
Batch Size: 2048
FLOPs: 18832161792
Parameters: 89874104
Training Data: ImageNet-1k
In Collection: SimMIM
Results: null
Weights: https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192_20220829-0e15782d.pth
Config: configs/simmim/simmim_swin-base-w6_8xb256-amp-coslr-100e_in1k-192px.py
Downstream:
- swin-base-w6_simmim-100e-pre_8xb256-coslr-100e_in1k-192px
- swin-base-w7_simmim-100e-pre_8xb256-coslr-100e_in1k
- Name: simmim_swin-base-w6_16xb128-amp-coslr-800e_in1k-192px
Metadata:
Epochs: 100
Batch Size: 2048
FLOPs: 18832161792
Parameters: 89874104
Training Data: ImageNet-1k
In Collection: SimMIM
Results: null
Weights: https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_16xb128-amp-coslr-800e_in1k-192/simmim_swin-base_16xb128-amp-coslr-800e_in1k-192_20220916-a0e931ac.pth
Config: configs/simmim/simmim_swin-base-w6_16xb128-amp-coslr-800e_in1k-192px.py
Downstream:
- swin-base-w6_simmim-800e-pre_8xb256-coslr-100e_in1k-192px
- Name: simmim_swin-large-w12_16xb128-amp-coslr-800e_in1k-192px
Metadata:
Epochs: 100
Batch Size: 2048
FLOPs: 55849130496
Parameters: 199920372
Training Data: ImageNet-1k
In Collection: SimMIM
Results: null
Weights: https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192_20220916-4ad216d3.pth
Config: configs/simmim/simmim_swin-large-w12_16xb128-amp-coslr-800e_in1k-192px.py
Downstream:
- swin-large-w14_simmim-800e-pre_8xb256-coslr-100e_in1k
- Name: swin-base-w6_simmim-100e-pre_8xb256-coslr-100e_in1k-192px
Metadata:
Epochs: 100
Batch Size: 2048
FLOPs: 11303976960
Parameters: 87750176
Training Data: ImageNet-1k
In Collection: SimMIM
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 82.7
Weights: https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_8xb256-amp-coslr-100e_in1k-192/swin-base_ft-8xb256-coslr-100e_in1k/swin-base_ft-8xb256-coslr-100e_in1k_20220829-9cf23aa1.pth
Config: configs/simmim/benchmarks/swin-base-w6_8xb256-coslr-100e_in1k-192px.py
- Name: swin-base-w7_simmim-100e-pre_8xb256-coslr-100e_in1k
Metadata:
Epochs: 100
Batch Size: 2048
FLOPs: 15466852352
Parameters: 87768224
Training Data: ImageNet-1k
In Collection: SimMIM
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.5
Weights: null
Config: configs/simmim/benchmarks/swin-base-w7_8xb256-coslr-100e_in1k.py
- Name: swin-base-w6_simmim-800e-pre_8xb256-coslr-100e_in1k-192px
Metadata:
Epochs: 100
Batch Size: 2048
FLOPs: 15466852352
Parameters: 87768224
Training Data: ImageNet-1k
In Collection: SimMIM
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.8
Weights: https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-base_16xb128-amp-coslr-800e_in1k-192/swin-base_ft-8xb256-coslr-100e_in1k-224/swin-base_ft-8xb256-coslr-100e_in1k-224_20221208-155cc6e6.pth
Config: configs/simmim/benchmarks/swin-base-w7_8xb256-coslr-100e_in1k.py
- Name: swin-large-w14_simmim-800e-pre_8xb256-coslr-100e_in1k
Metadata:
Epochs: 100
Batch Size: 2048
FLOPs: 38853083136
Parameters: 196848316
Training Data: ImageNet-1k
In Collection: SimMIM
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 84.8
Weights: https://download.openmmlab.com/mmselfsup/1.x/simmim/simmim_swin-large_16xb128-amp-coslr-800e_in1k-192/swin-large_ft-8xb256-coslr-ws14-100e_in1k-224/swin-large_ft-8xb256-coslr-ws14-100e_in1k-224_20220916-d4865790.pth
Config: configs/simmim/benchmarks/swin-large-w14_8xb256-coslr-100e_in1k.py