-
Notifications
You must be signed in to change notification settings - Fork 1
/
swin-large-w14_8xb256-coslr-100e_in1k.py
105 lines (97 loc) · 2.87 KB
/
swin-large-w14_8xb256-coslr-100e_in1k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
_base_ = [
'../../_base_/models/swin_transformer/base_224.py',
'../../_base_/datasets/imagenet_bs256_swin_192.py',
'../../_base_/default_runtime.py'
]
# dataset settings
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='RandomResizedCrop',
scale=224,
backend='pillow',
interpolation='bicubic'),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(
type='RandAugment',
policies='timm_increasing',
num_policies=2,
total_level=10,
magnitude_level=9,
magnitude_std=0.5,
hparams=dict(pad_val=[104, 116, 124], interpolation='bicubic')),
dict(
type='RandomErasing',
erase_prob=0.25,
mode='rand',
min_area_ratio=0.02,
max_area_ratio=0.3333333333333333,
fill_color=[103.53, 116.28, 123.675],
fill_std=[57.375, 57.12, 58.395]),
dict(type='PackInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='ResizeEdge',
scale=256,
edge='short',
backend='pillow',
interpolation='bicubic'),
dict(type='CenterCrop', crop_size=224),
dict(type='PackInputs')
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = val_dataloader
# model settings
model = dict(
backbone=dict(
arch='large',
img_size=224,
drop_path_rate=0.2,
stage_cfgs=dict(block_cfgs=dict(window_size=14)),
pad_small_map=True,
init_cfg=dict(type='Pretrained', checkpoint='', prefix='backbone.')),
head=dict(in_channels=1536))
# optimizer settings
optim_wrapper = dict(
type='AmpOptimWrapper',
optimizer=dict(type='AdamW', lr=5e-3, weight_decay=0.05),
clip_grad=dict(max_norm=5.0),
constructor='LearningRateDecayOptimWrapperConstructor',
paramwise_cfg=dict(
layer_decay_rate=0.7,
custom_keys={
'.norm': dict(decay_mult=0.0),
'.bias': dict(decay_mult=0.0),
'.absolute_pos_embed': dict(decay_mult=0.0),
'.relative_position_bias_table': dict(decay_mult=0.0)
}))
# learning rate scheduler
param_scheduler = [
dict(
type='LinearLR',
start_factor=2.5e-7 / 1.25e-3,
by_epoch=True,
begin=0,
end=20,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=100,
eta_min=1e-6,
by_epoch=True,
begin=20,
end=100,
convert_to_iter_based=True)
]
# runtime settings
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=100)
val_cfg = dict()
test_cfg = dict()
default_hooks = dict(
# save checkpoint per epoch.
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3),
logger=dict(type='LoggerHook', interval=100))
randomness = dict(seed=0)