Skip to content
This repository has been archived by the owner on Sep 2, 2024. It is now read-only.

Unable to obtain the same average error as Table 1 in the paper #32

Open
ghost opened this issue Dec 19, 2020 · 1 comment
Open

Unable to obtain the same average error as Table 1 in the paper #32

ghost opened this issue Dec 19, 2020 · 1 comment

Comments

@ghost
Copy link

ghost commented Dec 19, 2020

The average error on celeba is 8.25 in the paper, but my result is 10.14, which is obtained by directly using the codes in this repo. I list the configurations I used below, is there any problem?

in configs.json

    "celeba": {
        "path": "data/celeba",
        "all_tasks": ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20",
                      "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39"],
        "img_rows": 64,
        "img_cols": 64
    }

in sample.json

{
    "optimizer": "Adam", 
    "batch_size": 256, 
    "lr": 0.0005,
    "dataset": "celeba", 
    "tasks": ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20",
                  "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39"],
    "normalization_type": "loss+",
    "algorithm": "mgda",
    "use_approximation": true,
    "scales": {"0":0.025, "1":0.025, "2":0.025, "3":0.025, "4":0.025, "5":0.025, "6":0.025, "7":0.025, "8":0.025, "9":0.025, "10":0.025, 
               "11":0.025, "12":0.025, "13":0.025, "14":0.025, "15":0.025, "16":0.025, "17":0.025, "18":0.025, "19":0.025, "20":0.025, 
               "21":0.025, "22":0.025, "23":0.025, "24":0.025, "25":0.025, "26":0.025, "27":0.025, "28":0.025, "29":0.025, "30":0.025, 
               "31":0.025, "32":0.025, "33":0.025, "34":0.025, "35":0.025, "36":0.025, "37":0.025, "38":0.025, "39":0.025}
}

and the learning rate is multiplied by 0.85 every 10 epochs:
    if (epoch+1) % 10 == 0:
        # Every 50 epoch, half the LR
        for param_group in optimizer.param_groups:
            param_group['lr'] *= 0.85
        logger.info('Multiply the learning rate by {} [{} steps]'.format(0.85, n_iter))

and I train the model on two GPUs.
@keil555
Copy link

keil555 commented Apr 16, 2022

The average error on celeba is 8.25 in the paper, but my result is 10.14, which is obtained by directly using the codes in this repo. I list the configurations I used below, is there any problem?

in configs.json

    "celeba": {
        "path": "data/celeba",
        "all_tasks": ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20",
                      "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39"],
        "img_rows": 64,
        "img_cols": 64
    }

in sample.json

{
    "optimizer": "Adam", 
    "batch_size": 256, 
    "lr": 0.0005,
    "dataset": "celeba", 
    "tasks": ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20",
                  "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39"],
    "normalization_type": "loss+",
    "algorithm": "mgda",
    "use_approximation": true,
    "scales": {"0":0.025, "1":0.025, "2":0.025, "3":0.025, "4":0.025, "5":0.025, "6":0.025, "7":0.025, "8":0.025, "9":0.025, "10":0.025, 
               "11":0.025, "12":0.025, "13":0.025, "14":0.025, "15":0.025, "16":0.025, "17":0.025, "18":0.025, "19":0.025, "20":0.025, 
               "21":0.025, "22":0.025, "23":0.025, "24":0.025, "25":0.025, "26":0.025, "27":0.025, "28":0.025, "29":0.025, "30":0.025, 
               "31":0.025, "32":0.025, "33":0.025, "34":0.025, "35":0.025, "36":0.025, "37":0.025, "38":0.025, "39":0.025}
}

and the learning rate is multiplied by 0.85 every 10 epochs:
    if (epoch+1) % 10 == 0:
        # Every 50 epoch, half the LR
        for param_group in optimizer.param_groups:
            param_group['lr'] *= 0.85
        logger.info('Multiply the learning rate by {} [{} steps]'.format(0.85, n_iter))

and I train the model on two GPUs.

Hi, Ghost! I also failed to obtain the same results in Table 1. Have you solved this problem yet?

Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant