MMDetection3d is a next-generation platform for general 3D object detection. It is a part of the OpenMMLab project.
Please refer to getting_started.md for installation.
export MODEL_PATH=https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car_20220331_134606-d42d15ed.pth
python tools/deploy.py \
configs/mmdet3d/voxel-detection/voxel-detection_tensorrt_dynamic.py \
${MMDET3D_DIR}/configs/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.py \
${MODEL_PATH} \
${MMDET3D_DIR}/demo/data/kitti/kitti_000008.bin \
--work-dir \
work_dir \
--show \
--device \
cuda:0
Model | Task | OnnxRuntime | TensorRT | ncnn | PPLNN | OpenVINO | Model config |
---|---|---|---|---|---|---|---|
PointPillars | VoxelDetection | Y | Y* | N | N | Y | config |
- mmdet3d models on cu102+TRT8.4 can be visualized normally. For cuda-11 or TRT8.2 users, these issues should be checked
- Voxel detection onnx model excludes model.voxelize layer and model post process, and you can use python api to call these func.
Example:
from mmdeploy.codebase.mmdet3d.deploy import VoxelDetectionModel
VoxelDetectionModel.voxelize(...)
VoxelDetectionModel.post_process(...)