Skip to content

Latest commit

 

History

History
158 lines (124 loc) · 4.68 KB

README.md

File metadata and controls

158 lines (124 loc) · 4.68 KB

Are ELECTRA's Sentence Embeddings Beyond Repair? The Case of Semantic Textual Similarity

Code for the paper Are ELECTRA's Sentence Embeddings Beyond Repair? The Case of Semantic Textual Similarity accepted at EMNLP 2024 Findings.

Overview

The general idea of the paper reduces to the following:

  • Final layers of models pre-trained using a replaced token detection are too specialized for the pre-training task

Our solution to this issue is truncating the model and then fine-tuning. Here's a minimal (inefficient) example:

def mean_pooling(token_embeddings, attention_mask):
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    numerator = torch.sum(token_embeddings * input_mask_expanded, 1)
    denominator = torch.clamp(input_mask_expanded.sum(1), min=1e-9)  
    return numerator / denominator


class TruncatedModel(nn.Module):

    def __init__(self, model_name, final_layer_idx):
        super().__init__()
        self.model = AutoModel.from_pretrained(model_name)
        self.final_layer_idx = final_layer_idx

    def forward_once(self, text):
        out = self.model(**text, output_hidden_states=True).hidden_states[self.final_layer_idx]
        pooled_out = mean_pooling(out, text["attention_mask"])
        return pooled_out

    def forward(self, texts):
        first_embedding = self.forward_once(texts[0])
        if len(texts) == 1:
            return first_embedding
        
        second_embedding = self.forward_once(texts[1])
        return first_embedding, second_embedding

Or a bit more optimized:

class EfficientTruncatedModel(nn.Module):

    def __init__(self, model_name, final_layer_idx):
        super().__init__()
        self.model = AutoModel.from_pretrained(model_name)
        self.final_layer_idx = final_layer_idx

    def forward_once(self, text):
        out = (self.model.embeddings(text["input_ids"]),)
        k = 0
        while k < self.final_layer_idx:
            out = self.model.encoder.layer[k](out[0])
            k += 1
        out = out[0]
        pooled_out = mean_pooling(out, text["attention_mask"])
        return pooled_out

    def forward(self, texts):
        first_embedding = self.forward_once(texts[0])
        if len(texts) == 1:
            return first_embedding
        
        second_embedding = self.forward_once(texts[1])
        return first_embedding, second_embedding

A schematic overview of our methods can be seen below.

Our proposed method reduces the number of parameters and drastically improves performance for discriminator models on the test set of STSB:

Similar findings hold for different languages, and for other tasks (although not to the same extent).

Our other important finding is the often overlooked generator model. It achieves results comparable to BERT while being much smaller, and having a third of BERT's embedding size.

Usage

git clone [email protected]:ir2718/similarity-embedding-quality.git
cd similarity-embedding-quality

python3 -m venv similarity_venv
source similarity_venv/bin/activate
pip3 install -r requirements.txt

Reproducing Results

To reproduce the paper results, scripts are provided in the scripts folder:

chmod +x scripts/get_data.sh
chmod +x scripts/run_dapt.sh
chmod +x scripts/run_mrpc_experiments.sh
chmod +x scripts/run_random_stsb_experiments.sh
chmod +x scripts/run_sick_multiclass_experiments.sh
chmod +x scripts/run_stsb_experiments.sh
chmod +x scripts/run_stsb_improvements.sh
chmod +x scripts/run_translated_stsb_experiments.sh
chmod +x scripts/run_wordsim.sh

Get the word similarity data and the Korean dataset:

./scripts/get_data.sh

STSB Various sizes

For reproducing the results on STSB for various model sizes:

./scripts/run_stsb_experiments.sh

STSB With Improvements

For reproducing the results on STSB with improvements:

python3 src/scripts/preprocess_word_sim_data.py
./scripts/run_dapt.sh
./scripts/run_wordsim.sh
./scripts/run_stsb_improvements.sh

Translated STSB

For reproducing the results in Korean, German, and Spanish:

./scripts/run_translated_stsb_experiments.sh

MRPC

For reproducing the results on MRPC:

./scripts/run_mrpc_experiments.sh

SICK

For reproducing the results on SICK:

./scripts/run_sick_multiclass_experiments.sh