-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathClocked.agda
355 lines (278 loc) · 13.7 KB
/
Clocked.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
{-# OPTIONS --guarded --rewriting --confluence-check --with-K #-}
open import Agda.Primitive
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
{-# BUILTIN REWRITE _≡_ #-}
primitive primLockUniv : Set₁
variable
ℓ ℓ′ : Level
A B : Set ℓ
C : A → Set ℓ′
postulate
tickirr : {κ : primLockUniv} {f : κ → A} → (@tick t u : κ) → f t ≡ f u
tickext : {κ : primLockUniv} {Q : κ → Set ℓ} {f g : (@tick t : κ) → Q t} →
((@tick t : κ) → f t ≡ g t) → f ≡ g
funext : {f g : (x : A) → C x} → (∀ x → f x ≡ g x) → f ≡ g
funextRefl : ∀ {f : (x : A) → C x} p → funext {f = f} {g = f} p ≡ refl
funextRefl p with refl <- funext p = refl
{-# REWRITE funextRefl #-}
_>0 : Level → Level
ℓ >0 = lsuc lzero ⊔ ℓ
▹[_] : primLockUniv → Set ℓ → Set ℓ
▹[ κ ] A = (@tick t : κ) → A
▸[_] : (κ : primLockUniv) → ▹[ κ ] (Set ℓ) → Set ℓ
▸[ κ ] A = (@tick t : κ) → A t
next : ∀ κ → A → ▹[ κ ] A
next _ a _ = a
ap : ∀ κ {A : (@tick t : κ) → Set ℓ} {B : (@tick t : κ) → A t → Set ℓ′} →
((@tick t : κ) → (x : A t) → B t x) → (a : ▸[ κ ] A) → (@tick t : κ) → B t (a t)
ap _ f a t = f t (a t)
postulate
-- ⋄ : {κ : primLockUniv} → κ
dfix : ∀ κ → (▹[ κ ] A → A) → ▹[ κ ] A
pfix : ∀ κ f → (@tick t : κ) → dfix {ℓ} {A} κ f t ≡ f (dfix κ f)
{-
dfix⋄ : ∀ κ f → dfix {ℓ} {A} κ f ⋄ ≡ f (dfix κ f)
dfix⋄ κ f = pfix κ f ⋄
{-# REWRITE dfix⋄ #-}
pfix⋄ : ∀ κ f → pfix {ℓ} {A} κ f ⋄ ≡ refl
pfix⋄ κ f with refl <- pfix κ f ⋄ = refl
{-# REWRITE pfix⋄ #-}
-}
unfold : ∀ κ → (F : ▹[ κ ] (Set ℓ) → Set ℓ) → (@tick t : κ) → dfix κ F t → F (dfix κ F)
unfold κ F t = subst (λ x → x) (pfix κ F t)
fold : ∀ κ → (F : ▹[ κ ] (Set ℓ) → Set ℓ) → (@tick t : κ) → F (dfix κ F) → dfix κ F t
fold κ F t = subst (λ x → x) (sym (pfix κ F t))
foldunfold : ∀ {κ} {F : ▹[ κ ] (Set ℓ) → Set ℓ} (@tick t : κ) x → fold κ F t (unfold κ F t x) ≡ x
foldunfold {ℓ} {κ} {F} t x = subst-sym-subst (pfix κ F t)
unfoldfold : ∀ {κ} {F : ▹[ κ ] (Set ℓ) → Set ℓ} (@tick t : κ) x → unfold κ F t (fold κ F t x) ≡ x
unfoldfold {ℓ} {κ} {F} t x = subst-subst-sym (pfix κ F t)
fix : ∀ κ → (▹[ κ ] A → A) → A
fix κ f = f (dfix κ f)
force : ∀ {P : primLockUniv → Set ℓ} → (∀ κ → ▹[ κ ] (P κ)) → (∀ κ → P κ)
force f κ = f κ {! ⋄ !}
_∘▸[_]_ : (Set ℓ → Set ℓ) → ∀ κ → ▹[ κ ] (Set ℓ) → Set ℓ
F ∘▸[ κ ] X = F (▸[ κ ] X)
ν[_]_ : ∀ κ → (Set ℓ → Set ℓ) → Set ℓ
ν[ κ ] F = fix κ (F ∘▸[ κ ]_)
module coïn
(ℓ : Level)
(F : Set (ℓ >0) → Set (ℓ >0))
-- F is a functor and follows functor laws
(fmap : ∀ {A B} → (A → B) → F A → F B)
(fid : ∀ {A} (x : F A) → fmap (λ x → x) x ≡ x)
(fcomp : ∀ {A B C} (g : B → C) (f : A → B) a → fmap g (fmap f a) ≡ fmap (λ a → g (f a)) a)
-- F commutes with clock quantification and with fmap
(fcomm : {P : primLockUniv → Set (ℓ >0)} → (∀ κ → F (P κ)) → F (∀ κ → P κ))
(fmapfcomm : ∀ {P} κ f → fmap (λ g → g κ) (fcomm {P} f) ≡ f κ)
(fcommfmap : ∀ {P} x → fcomm {P} (λ κ → fmap (λ f → f κ) x) ≡ x)
(fcommute : ∀ {P Q} (f : ∀ κ → P κ → Q κ) x → fcomm {Q} (λ κ → fmap (f κ) (x κ)) ≡ fmap (λ g κ → f κ (g κ)) (fcomm {P} x))
where
ν : (Set (ℓ >0) → Set (ℓ >0)) → Set (ℓ >0)
ν F = ∀ κ → ν[ κ ] F
inFκ : ∀ {κ} → F (▹[ κ ] (ν[ κ ] F)) → ν[ κ ] F
inFκ {κ} f = fmap (ap κ (fold κ (F ∘▸[ κ ]_))) f
outFκ : ∀ {κ} → ν[ κ ] F → F (▹[ κ ] (ν[ κ ] F))
outFκ {κ} f = fmap (ap κ (unfold κ (F ∘▸[ κ ]_))) f
inoutFκ : ∀ {κ} x → inFκ {κ} (outFκ {κ} x) ≡ x
inoutFκ {κ} x =
let lem = funext (λ g → tickext (ap κ (foldunfold {F = F ∘▸[ κ ]_}) g))
in begin
inFκ (outFκ x) ≡⟨ fcomp _ _ x ⟩
fmap (λ z (@tick t) →
fold κ (F ∘▸[ κ ]_) t
(unfold κ _ t (z t))) x ≡⟨ cong (λ f → fmap f x) lem ⟩
fmap (λ x → x) x ≡⟨ fid x ⟩
x ∎
outinFκ : ∀ {κ} x → outFκ {κ} (inFκ {κ} x) ≡ x
outinFκ {κ} x =
let lem = funext (λ g → (tickext (ap κ (unfoldfold {F = F ∘▸[ κ ]_}) g)))
in begin
outFκ (inFκ x) ≡⟨ fcomp _ _ x ⟩
fmap (λ z (@tick t) →
unfold κ (F ∘▸[ κ ]_) t
(fold κ _ t (z t))) x ≡⟨ cong (λ f → fmap f x) lem ⟩
fmap (λ x → x) x ≡⟨ fid x ⟩
x ∎
inF : F (ν F) → ν F
inF f κ = inFκ (fmap (λ g → next κ (g κ)) f)
outF : ν F → F (ν F)
outF f = fmap force (fcomm (λ κ → outFκ (f κ)))
coitκ : ∀ κ → (A → F (▹[ κ ] A)) → A → ν[ κ ] F
coitκ κ f a = fix κ (λ ▹coit a →
inFκ (fmap (λ x → ap κ ▹coit x) (f a))) a
inoutF : ∀ x → inF (outF x) ≡ x
inoutF x = funext (λ κ → begin
inF (outF x) κ ≡⟨ fcomp _ _ (outF x) ⟩
fmap _ (fmap force (fcomm _)) ≡⟨ fcomp _ force (fcomm _) ⟩
fmap _ (fcomm _) ≡⟨ cong (λ g → fmap g (fcomm (λ κ → outFκ (x κ))))
(funext (λ f →
(tickext (λ (@tick t) →
cong (fold κ (F ∘▸[ κ ]_) t)
(tickirr {f = f κ} _ t))))) ⟩
fmap _ (fcomm _) ≡⟨ sym (fcomp (ap κ (fold κ (F ∘▸[ κ ]_))) (λ g → g κ) (fcomm _)) ⟩
fmap _ (fmap (λ g → g κ) (fcomm _)) ≡⟨ cong (fmap _) (fmapfcomm κ (λ κ′ → outFκ (x κ′))) ⟩
inFκ (outFκ (x κ)) ≡⟨ inoutFκ (x κ) ⟩
x κ ∎)
outinF : ∀ x → outF (inF x) ≡ x
outinF x = begin
outF (inF x) ≡⟨ cong (λ x → fmap force (fcomm x)) (funext (λ κ → outinFκ (fmap (λ g → next κ (g κ)) x))) ⟩
fmap force (fcomm (λ κ → fmap _ x)) ≡⟨ cong (λ x → fmap force x) (fcommute (λ κ g → next κ (g κ)) (λ _ → x)) ⟩
fmap force (fmap _ (fcomm _)) ≡⟨ fcomp _ _ (fcomm (λ _ → x)) ⟩
fmap _ (fcomm _) ≡⟨ sym (fcommute (λ κ g → g κ) (λ _ → x)) ⟩
fcomm (λ κ → fmap (λ g → g κ) x) ≡⟨ fcommfmap x ⟩
x ∎
case : (P : ν F → Set) → (∀ t → P (inF t)) → ∀ x → P x
case P p x = subst P (inoutF x) (p (outF x))
coit : (A → F A) → A → ν F
coit f a κ = fix κ (λ ▹coit a →
inFκ (fmap (λ x → ap κ ▹coit (next κ x)) (f a))) a
{----------------------
We show that the coalgebra (νF, outF) is terminal
by proving that the following square commutes:
coit f
A -------> νF
| |
f | | outF
V V
F A -----> F νF
fmap (coit f)
It seemed easier to first show that
inF ∘ fmap (coit f) ∘ f ≡ coit f
then outF both sides and use outF ∘ inF cancellation.
----------------------}
terminal′ : ∀ f κ (x : A) → coit f x κ ≡ inF (fmap (coit f) (f x)) κ
terminal′ f κ x =
let h = λ ▹coit a → inFκ (fmap (λ x → ap κ ▹coit (next κ x)) (f a))
in cong inFκ (begin
_ ≡⟨ cong (λ g → fmap g (f x))
(funext (λ a →
tickext (λ (@tick t) →
cong (λ g → g a)
(pfix κ h t)))) ⟩
_ ≡⟨ sym (fcomp _ _ _) ⟩
_ ∎)
terminal : ∀ f (x : A) → outF (coit f x) ≡ fmap (coit f) (f x)
terminal f x = begin
_ ≡⟨ cong outF (funext (λ κ → terminal′ f κ x)) ⟩
_ ≡⟨ outinF (fmap (coit f) (f x)) ⟩
_ ∎
{---------------------------
INSTANCES OF COFIXPOINTS
OF SOME FUNCTORS
---------------------------}
-- Compute along clock irrelevance
postulate
κ₀ : primLockUniv
punκ : ∀ {κ₁ κ₂} (x : primLockUniv → A) → x κ₁ ≡ x κ₂
cunκ : ∀ κ₁ κ₂ (x : A) → punκ {κ₁ = κ₁} {κ₂ = κ₂} (λ κ → x) ≡ refl
cunκ κ₁ κ₂ x with refl <- punκ {κ₁ = κ₁} {κ₂ = κ₂} (λ κ → x) = refl
{-# REWRITE cunκ #-}
-- Polynomial functors
record ℙ (S : Set₁) (P : S → Set₁) (X : Set₁) : Set₁ where
constructor _⟫_
field
shape : S
position : P shape → X
open ℙ
-- Principle of induction under a clock
postulate
elim : (S : primLockUniv → Set₁)
(P : ∀ κ → S κ → Set₁)
(X : primLockUniv → Set₁)
(Q : (∀ κ → ℙ (S κ) (P κ) (X κ)) → Set₁) →
((s : ∀ κ → S κ) (p : ∀ κ → P κ (s κ) → X κ) → Q (λ κ → s κ ⟫ p κ)) →
∀ p → Q p
elimred : ∀ S P X Q h s (p : ∀ κ → P κ (s κ) → X κ) → elim S P X Q h (λ κ → s κ ⟫ p κ) ≡ h s p
{-# REWRITE elimred #-}
module poly (S : Set₁) (P : S → Set₁) where
fmap : (A → B) → ℙ S P A → ℙ S P B
fmap f (s ⟫ p) = s ⟫ λ x → f (p x)
fid : ∀ (x : ℙ S P A) → fmap (λ x → x) x ≡ x
fid x = refl
fcomp : ∀ {A B C} (g : B → C) (f : A → B) p → fmap g (fmap f p) ≡ fmap (λ x → g (f x)) p
fcomp g f p = refl
fcomm : {X : primLockUniv → Set₁} → (∀ κ → ℙ S P (X κ)) → ℙ S P (∀ κ → X κ)
fcomm {X} p =
let s ⟫ f = elim (λ κ → S) (λ κ s → P s) X
(λ _ → ℙ (primLockUniv → S) (λ s → ∀ κ → P (s κ)) (∀ κ → X κ))
(λ s p → s ⟫ λ b κ → p κ (b κ)) p
in s κ₀ ⟫ λ b → f (λ κ → subst P (punκ s) b)
fmapfcomm : ∀ {X} κ f → fmap (λ g → g κ) (fcomm {X} f) ≡ f κ
fmapfcomm {X} κ f = ℙeq (f κ .position) (punκ (λ κ′ → f κ′ .shape)) where
ℙeq : ∀ {s₁ s₂} (f : P s₂ → X κ) → (p : s₁ ≡ s₂) → (s₁ ⟫ λ b → f (subst P p b)) ≡ (s₂ ⟫ f)
ℙeq _ refl = refl
fcommfmap : ∀ {X} p → fcomm {X} (λ κ → fmap (λ f → f κ) p) ≡ p
fcommfmap p = refl
fcommute : ∀ {X Y} (f : ∀ κ → X κ → Y κ) p → fcomm {Y} (λ κ → fmap (f κ) (p κ)) ≡ fmap (λ g κ → f κ (g κ)) (fcomm {X} p)
fcommute f p = refl
open coïn (lsuc lzero) (ℙ S P) fmap fid fcomp fcomm fmapfcomm fcommfmap fcommute public
-- The below three proofs don't compute to `refl`
-- because they are blocked on the missing tick in `force`
outinF′ : ∀ x → outF (inF x) ≡ x
outinF′ x = {! refl !}
terminal′′ : ∀ g (x : A) → outF (coit g x) ≡ fmap (coit g) (g x)
terminal′′ g x = {! refl !}
caseIn : ∀ P p t → case P p (inF t) ≡ p t
caseIn P p t = {! refl !}
-- Stream functors
record StreamF (D : Set₁) (X : Set₁) : Set₁ where
constructor _∷_
field
hd : D
tl : X
open StreamF
-- Principle of stream induction under a clock
postulate
elimStream :
(D : primLockUniv → Set₁)
(X : primLockUniv → Set₁)
(Q : (∀ κ → StreamF (D κ) (X κ)) → Set₁) →
((d : ∀ κ → D κ) (x : ∀ κ → X κ) → Q (λ κ → d κ ∷ x κ)) →
∀ s → Q s
elimStreamRed : ∀ D X Q h d x → elimStream D X Q h (λ κ → d κ ∷ x κ) ≡ h d x
{-# REWRITE elimStreamRed #-}
module stream (D : Set₁) where
fmap : (A → B) → StreamF D A → StreamF D B
fmap f (hd ∷ tl) = hd ∷ f tl
fid : ∀ (s : StreamF D A) → fmap (λ x → x) s ≡ s
fid s = refl
fcomp : ∀ {A B C} (g : B → C) (f : A → B) s → fmap g (fmap f s) ≡ fmap (λ x → g (f x)) s
fcomp g f s = refl
fcomm : {X : primLockUniv → Set₁} → (∀ κ → StreamF D (X κ)) → StreamF D (∀ κ → X κ)
fcomm {X} s =
let d ∷ x = elimStream (λ κ → D) X (λ _ → StreamF (primLockUniv → D) (∀ κ → X κ)) (_∷_) s
in d κ₀ ∷ x
fmapfcomm : ∀ {X} κ f → fmap (λ g → g κ) (fcomm {X} f) ≡ f κ
fmapfcomm κ f = cong (λ d → d ∷ f κ .tl) (punκ (λ κ → f κ .hd))
fcommfmap : ∀ {X} s → fcomm {X} (λ κ → fmap (λ f → f κ) s) ≡ s
fcommfmap s = refl
fcommute : ∀ {X Y} (f : ∀ κ → X κ → Y κ) s → fcomm {Y} (λ κ → fmap (f κ) (s κ)) ≡ fmap (λ g κ → f κ (g κ)) (fcomm {X} s)
fcommute f s = refl
open coïn (lsuc lzero) (StreamF D) fmap fid fcomp fcomm fmapfcomm fcommfmap fcommute public
outinF′ : ∀ x → outF (inF x) ≡ x
outinF′ x = {! refl !}
terminal′′ : ∀ g (x : A) → outF (coit g x) ≡ fmap (coit g) (g x)
terminal′′ g x = {! refl !}
caseIn : ∀ P p t → case P p (inF t) ≡ p t
caseIn P p t = {! refl !}
Stream : Set₁
Stream = ν (StreamF D)
Streamκ : primLockUniv → Set₁
Streamκ κ = ν[ κ ] (StreamF D)
module shuffle (_+_ : D → D → D) (_*_ : D → D → D) where
open import Data.Product hiding (map)
map : ∀ κ → (A → B) → ▹[ κ ] A → ▹[ κ ] B
map κ f a t = f (a t)
map2 : ∀ κ → (A → A → B) → ▹[ κ ] A → ▹[ κ ] A → ▹[ κ ] B
map2 κ f a₁ a₂ t = f (a₁ t) (a₂ t)
zipF : ∀ κ → Streamκ κ × Streamκ κ → Streamκ κ
zipF κ = coitκ κ (λ (r , s) →
let rhd ∷ rtl = outFκ r
shd ∷ stl = outFκ s
in (rhd + shd) ∷ map2 κ _,_ rtl stl)
shuffle : Stream → Stream → Stream
shuffle r s κ = fix κ (λ ▹shuffle r s →
let rhd ∷ rtl = outF r
shd ∷ stl = outF s
in inFκ ((rhd * shd) ∷ map κ (λ f → zipF κ (f rtl s , f r stl)) ▹shuffle)) r s