From 27be688d078a7aefa47afc819f64dc013a65aa08 Mon Sep 17 00:00:00 2001 From: ioannisPApapadopoulos Date: Thu, 1 Aug 2024 12:40:12 +0200 Subject: [PATCH] fix tests with compat to ContinuumArrays >=v0.18.3 --- README.md | 2 +- test/test_continuouszernike.jl | 2 +- test/test_zernikebasis.jl | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/README.md b/README.md index 7c8c3cb..94d1d37 100644 --- a/README.md +++ b/README.md @@ -1,7 +1,7 @@ # RadialPiecewisePolynomials.jl [![CI](https://github.com/ioannisPApapadopoulos/RadialPiecewisePolynomials.jl/actions/workflows/ci.yml/badge.svg?branch=main)](https://github.com/ioannisPApapadopoulos/RadialPiecewisePolynomials.jl/actions/workflows/ci.yml) -[![codecov.io](http://codecov.io/github/ioannisPApapadopoulos/RadialPiecewisePolynomials.jl/coverage.svg?branch=main)](http://codecov.io/github/ioannisPApapadopoulos/RadialPiecewisePolynomials.jl?branch=main) +[![codecov.io](http://codecov.io/gh/ioannisPApapadopoulos/RadialPiecewisePolynomials.jl/branch/main/graph/badge.svg)](http://codecov.io/github/ioannisPApapadopoulos/RadialPiecewisePolynomials.jl?branch=main) A Julia package for a hierarchical hp-finite element basis on disk and annuli. The mesh is an innermost disk (omitted if the domain is an annulus) and concentric annuli. The basis consists of Zernike (annular) polynomials modified into hat (external shape) and bubble (internal shape) functions. diff --git a/test/test_continuouszernike.jl b/test/test_continuouszernike.jl index 2acc2c1..d5e012d 100644 --- a/test/test_continuouszernike.jl +++ b/test/test_continuouszernike.jl @@ -1,9 +1,9 @@ using Test, RadialPiecewisePolynomials, Memoization import RadialPiecewisePolynomials: _getγs -c1 = -10; c2 = 0; c3=0.6 function f0_(x, y) ρ = 0.2 + c1,c3 = -10, 0.6 exp(c1*(x^2 + (y-c3)^2)) * (1-(x^2+y^2)) * ((x^2+y^2)-ρ^2) end function f0(xy) diff --git a/test/test_zernikebasis.jl b/test/test_zernikebasis.jl index ab0e34e..8088967 100644 --- a/test/test_zernikebasis.jl +++ b/test/test_zernikebasis.jl @@ -8,9 +8,9 @@ f6(xy) = exp(-first(xy)^2-last(xy)^2) * sqrt(first(xy)^2+last(xy)^2)^6*cos(6*ata f1c(xy) = exp(-first(xy)^2-last(xy)^2) * sqrt(first(xy)^2+last(xy)^2)*cos(atan(last(xy), first(xy))) f1s(xy) = exp(-first(xy)^2-last(xy)^2) * sqrt(first(xy)^2+last(xy)^2)*sin(atan(last(xy), first(xy))) -c1 = -10; c2 = 0; c3=0.6 function u0_(x, y) ρ = 0.2 + c1, c3 = -10, 0.6 exp(c1*(x^2 + (y-c3)^2)) * (1-(x^2+y^2)) * ((x^2+y^2)-ρ^2) end function u0(xy)