-
Notifications
You must be signed in to change notification settings - Fork 93
/
cell.js
593 lines (587 loc) · 28.9 KB
/
cell.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
/*
* {cell}
*
* - Membrane: "The cell membrane (also known as the plasma membrane or cytoplasmic membrane) is a biological membrane that separates the interior of all cells from the outside environment"
* - Gene: "The transmission of genes to an organism's offspring is the basis of the inheritance of phenotypic traits. These genes make up different DNA sequences called genotypes. Genotypes along with environmental and developmental factors determine what the phenotypes will be."
* - Genotype: "Genotype is an organism's full hereditary information."
* - Phenotype: "Phenotype is an organism's actual observed properties, such as morphology, development, or behavior."
* - Nucleus: "The nucleus maintains the integrity of genes and controls the activities of the cell by regulating gene expression—the nucleus is, therefore, the control center of the cell."
*/
(function($root) {
var Membrane = {
/*
* [Membrane] The Shell
*
* "The cell membrane (also known as the plasma membrane or cytoplasmic membrane) is a biological membrane that separates the interior of all cells from the outside environment"
* - https://en.wikipedia.org/wiki/Cell_membrane
*
* The Membrane module determines how a cell is inserted into the DOM. There are two ways: Replacing an existing node with cell (inject), or Creating an additional cell node (add).
* - inject(): attempts to inject cell into an existing host node
* - add(): creates a new cell node and adds it to the DOM without touching other nodes
*/
inject: function($host, gene, namespace, replace) {
/*
* Membrane.inject() : Inject cell into an existing node
*
* @param {Object} $host - existing host node to inject into
* @param {Object} gene - gene object
* @param {String} namespace - for handling namespaced elements such as SVG https://developer.mozilla.org/en-US/docs/Web/API/Document/createElementNS
* @param {Boolean} replace - if true, create a node and replace it with the host node. Used for manual instantiation
*/
var $node = null;
var $replacement;
if (replace && $host) {
// 1. Inject into an existing node ($host) by explicit instantiation
$replacement = Phenotype.$type(gene, namespace);
if (gene.hasOwnProperty('$cell')) {
$node = $host;
if ($node.parentNode) $node.parentNode.replaceChild($replacement, $node);
}
$node = $replacement;
} else if (gene.$type && (gene.$type === 'head' || gene.$type === 'body') && $root.document.getElementsByTagName(gene.$type)) {
// 2. Inject into existing 'head' or 'body' nodes
$node = $root.document.getElementsByTagName(gene.$type)[0];
} else if (gene.id && $root.document.getElementById(gene.id)) {
// 3. Inject into an existing nodes by ID
$node = $root.document.getElementById(gene.id);
if ($node.nodeName.toLowerCase() !== (gene.$type || 'div')) {
$replacement = Phenotype.$type(gene, namespace);
$node.parentNode.replaceChild($replacement, $node);
$node = $replacement;
}
}
if ($node && !$node.Meta) $node.Meta = {};
return $node;
},
add: function($parent, gene, index, namespace) {
/*
* Membrane.add() : Adds a new cell node into the DOM tree
*
* @param $parent - The parent node to which the new cell node will be added
* @param gene - gene object
* @param index - the position within the parent's childNodes array to which this cell node will be added. Not used in the initial render but used for subsequent renders based on the diff logic
* @param namespace - namespace URL for namespaced elements such as SVG
*/
var $node = Phenotype.$type(gene, namespace);
if (index !== null && index !== undefined && $parent.childNodes && $parent.childNodes[index]) {
// Index is specified, so insert into that position
$parent.insertBefore($node, $parent.childNodes[index]);
} else {
// No index, simply apppend to the end
$parent.appendChild($node);
}
return $node;
},
build: function($parent, gene, index, namespace, replace) {
/*
* Membrane.build() : The main builder function that interfaces with Membrane.inject() and Membrane.add().
*/
// 1. Attempt to inject into an existing node
var $existing = Membrane.inject($parent, gene, namespace, replace);
if ($existing) return $existing;
// 2. If it's not an injection into an existing node, we create a node
else return Membrane.add($parent, gene, index, namespace);
},
};
var Genotype = {
/*
* [Genotype] Internal Storage of Genes
*
* "Genotype is an organism's full hereditary information."
* - https://en.wikipedia.org/wiki/Genotype
*
* The Genotype module is an internal storage for all the variables required to construct a cell node (attributes, $variables, and _variables)
* When you set a variable on a cell (for example: this._index=1), it's actually stored under the node's Genotype instead of directly on the node itself.
*
* - set(): a low-level function to simply set a key/value pair on the Genotype object, used by update() and build()
* - update(): updates a key/value pair from the genotype and schedules a phenotype (view) update event to be processed on the next tick
* - build(): builds a fresh genotype object from a gene object
*/
set: function($node, key, val) {
if (['$init'].indexOf(key) === -1) {
$node.Genotype[key] = Nucleus.bind($node, val);
} else {
val.snapshot = val; // snapshot of $init
$node.Genotype[key] = val;
}
},
update: function($node, key, val) {
Nucleus.queue($node, key, 'w');
Genotype.set($node, key, val);
},
build: function($node, gene, inheritance) {
$node.Genotype = {};
$node.Inheritance = inheritance;
for (var key in gene) {
Genotype.set($node, key, gene[key]);
}
},
infect: function(gene) {
var virus = gene.$virus;
if (!virus) return gene;
var mutations = Array.isArray(virus) ? virus : [virus];
delete gene.$virus;
return mutations.reduce(function(g, mutate) {
var mutated = mutate(g);
if (mutated === null || typeof mutated !== 'object') {
throw new Error('$virus mutations must return an object');
}
mutated.$type = mutated.$type || 'div';
return mutated;
}, gene);
},
};
var Gene = {
/*
* [Gene] Gene manipulation/diff functions
*
* "The transmission of genes to an organism's offspring is the basis of the inheritance of phenotypic traits. These genes make up different DNA sequences called genotypes. Genotypes along with environmental and developmental factors determine what the phenotypes will be."
* - https://en.wikipedia.org/wiki/Gene
*
* The Gene module is a collection of utility functions used for comparing gene objects to determine if a node needs to be replaced or left alone when there's an update.
* - freeze(): stringifies a Javascript object snapshot for comparison
* - LCS(): Longest Common Subsequence algorithm https://en.wikipedia.org/wiki/Longest_common_subsequence_problem
* - diff(): A diff algorithm that returns what have been added (+), and removed (-)
*/
freeze: function(gene) {
var cache = [];
var res = JSON.stringify(gene, function(key, val) {
if (typeof val === 'function') { return val.toString(); }
if (typeof val === 'object' && val !== null) {
if (cache.indexOf(val) !== -1) { return '[Circular]'; }
cache.push(val);
}
return val;
});
cache = null;
return res;
},
LCS: function(a, b) {
var m = a.length, n = b.length, C = [], i, j, af = [], bf = [];
for (i = 0; i < m; i++) af.push(Gene.freeze(a[i]));
for (j = 0; j < n; j++) bf.push(Gene.freeze(b[j]));
for (i = 0; i <= m; i++) C.push([0]);
for (j = 0; j < n; j++) C[0].push(0);
for (i = 0; i < m; i++) for (j = 0; j < n; j++) C[i+1][j+1] = af[i] === bf[j] ? C[i][j]+1 : Math.max(C[i+1][j], C[i][j+1]);
return (function bt(i, j) {
if (i*j === 0) { return []; }
if (af[i-1] === bf[j-1]) { return bt(i-1, j-1).concat([{ item: a[i-1], _old: i-1, _new: j-1 }]); }
return C[i][j-1] > C[i-1][j] ? bt(i, j-1) : bt(i-1, j);
}(m, n));
},
diff: function(_old, _new) {
var lcs = Gene.LCS(_old, _new);
var old_common = lcs.map(function(i) { return i._old; });
var minus = _old.map(function(item, index) {
return { item: item, index: index };
}).filter(function(item, index) {
return old_common.indexOf(index) === -1;
});
var new_common = lcs.map(function(i) { return i._new; });
var plus = _new.map(function(item, index) {
return { item: item, index: index };
}).filter(function(item, index) {
return new_common.indexOf(index) === -1;
});
return { '-': minus, '+': plus };
},
};
var Phenotype = {
/*
* [Phenotype] Actual observed properties of a cell
*
* "Phenotype is an organism's actual observed properties, such as morphology, development, or behavior."
* - https://en.wikipedia.org/wiki/Phenotype
*
* The Phenotype module manages a cell's actual observed properties, such as textContent ($text), nodeType ($type), innerHTML ($html), childNodes ($components), and DOM attributes
*
* - build(): Build phenotype from genotype
* - set(): Sets a key/value pair of phenotype
* - $type(): translates the "$type" attribute to nodeType
* - $text(): translates the "$type" attribute to textContent
* - $html(): translates the "$type" attribute to innerHTML
* - $components(): translates the "$components" attribute to childNodes
* - $init(): executes the "$init" callback function after the element has been rendered
* - $update(): executes the "$update" callback function when needed (called by Nucleus on every tick)
*/
build: function($node, genotype) {
Phenotype.$init($node);
for (var key in genotype) {
if (genotype[key] !== null && genotype[key] !== undefined) {
Phenotype.set($node, key, genotype[key]);
}
}
},
multiline: function(fn) { return /\/\*!?(?:@preserve)?[ \t]*(?:\r\n|\n)([\s\S]*?)(?:\r\n|\n)[ \t]*\*\//.exec(fn.toString())[1]; },
get: function(key) {
return Object.getOwnPropertyDescriptor($root.HTMLElement.prototype, key) || Object.getOwnPropertyDescriptor($root.Element.prototype, key);
},
set: function($node, key, val) {
if (key[0] === '$') {
if (key === '$type') {
// recreate and rebind the node if it's different from the old one
var tag = $node.tagName ? $node.tagName.toLowerCase() : 'text';
if (val.toLowerCase() !== tag) {
var fragment = Phenotype.$type({ $type: 'fragment' });
var replacement = fragment.$build($node.Genotype, $node.Inheritance, null, $node.Meta.namespace);
$node.parentNode.replaceChild(replacement, $node);
$node = replacement;
}
} else if (key === '$text') {
if (typeof val === 'function') val = Phenotype.multiline(val);
$node.textContent = val;
} else if (key === '$html') {
if (typeof val === 'function') val = Phenotype.multiline(val);
$node.innerHTML = val;
} else if (key === '$components') {
Phenotype.$components($node, val);
}
} else if (key[0] === '_') {
// "_" variables don't directly alter the phenotype, so do nothing
} else if (key === 'value') {
$node[key] = val;
} else if (key === 'style' && typeof val === 'object') {
var CSSStyleDeclaration = Phenotype.get(key).get.call($node);
for (var attr in val) { CSSStyleDeclaration[attr] = val[attr]; }
} else if (typeof val === 'number' || typeof val === 'string' || typeof val === 'boolean') {
if ($node.setAttribute) $node.setAttribute(key, val);
} else if (typeof val === 'function') {
// For natively supported HTMLElement.prototype methods such as onclick()
var prop = Phenotype.get(key);
if (prop) prop.set.call($node, val);
}
},
$type: function(model, namespace) {
var meta = {};
var $node;
if (model.$type === 'svg') {
$node = $root.document.createElementNS('http://www.w3.org/2000/svg', model.$type);
meta.namespace = $node.namespaceURI;
} else if (namespace) {
$node = $root.document.createElementNS(namespace, model.$type);
meta.namespace = $node.namespaceURI;
} else if (model.$type === 'fragment') {
$node = $root.document.createDocumentFragment();
} else if (model.$type === 'text') {
if (model.$text && typeof model.$text === 'function') model.$text = Phenotype.multiline(model.$text);
$node = $root.document.createTextNode(model.$text);
} else {
$node = $root.document.createElement(model.$type || 'div');
}
$node.Meta = meta;
return $node;
},
$components: function($parent, components) {
if (!components) components = [];
var old = [].map.call($parent.childNodes, function($node) {
return $node.Genotype;
}).filter(function(item) {
return item; // only compare with Cells (that have Genotype), not additional elements created by another javascript library
});
if (old.length > 0) {
// If childNodes already exist, try to insert into a correct position.
var diff = Gene.diff(old, components);
diff['-'].forEach(function(item) { $parent.childNodes[item.index].Kill = true; });
[].filter.call($parent.childNodes, function($node) {
return $node.Kill;
}).forEach(function($node) {
$parent.removeChild($node);
});
diff['+'].forEach(function(item) {
var inheritance = $parent.Inheritance;
for (var key in $parent.Genotype) {
if (key[0] === '_') inheritance = inheritance.concat([key]);
}
$parent.$build(item.item, inheritance, item.index, $parent.Meta.namespace);
$parent.$components[item.index] = $parent.childNodes[item.index].Genotype;
});
} else {
// first time construction => no childNodes => build a fragment and insert at once
var $fragment = Phenotype.$type({ $type: 'fragment' });
var inheritance = $parent.Inheritance;
for (var key in $parent.Genotype) {
if (key[0] === '_') inheritance = inheritance.concat([key]);
}
while ($parent.firstChild) { $parent.removeChild($parent.firstChild); } // remove empty text nodes
components.forEach(function(component) {
$fragment.$build(component, inheritance, null, $parent.Meta.namespace);
});
$parent.appendChild($fragment);
$parent.$components = [].map.call($parent.childNodes, function($node) { return $node.Genotype; });
}
},
$init: function($node) {
Nucleus.tick.call($root, function() {
if ($node.Genotype && $node.Genotype.$init) Nucleus.bind($node, $node.Genotype.$init)();
});
},
$update: function($node) {
if ($node.parentNode && !$node.Meta.$updated && $node.$update) {
$node.Meta.$updated = true;
$node.$update();
for (var key in $node.Dirty) { Phenotype.set($node, key, $node.Genotype[key]); }
$node.Meta.$updated = false;
$node.Dirty = null;
}
},
};
var Nucleus = {
/*
* [Nucleus] Handles the cell cycle
*
* "The nucleus maintains the integrity of genes and controls the activities of the cell by regulating gene expression—the nucleus is, therefore, the control center of the cell."
* - https://en.wikipedia.org/wiki/Cell_nucleus
*
* The Nucleus module creates a proxy that lets Cell interface with the outside world. Its main job is to automatically trigger phenotype updates based on genotype updates
*
* - set(): Starts listening to a single attribute.
* - build(): Starts listening to all attributes defined on the gene
* - bind(): Creates a wrapper function that executes the original function, and then automatically updates the Phenotype if necessary.
* - queue(): A function that queues up all potential genotype mutation events so that they can be batch-processed in a single tick.
*/
tick: $root.requestAnimationFrame || $root.webkitRequestAnimationFrame || $root.mozRequestAnimationFrame || $root.msRequestAnimationFrame || function(cb) { return $root.setTimeout(cb, 1000/60); },
set: function($node, key) {
// Object.defineProperty is used for overriding the default getter and setter behaviors.
try {
Object.defineProperty($node, key, {
configurable: true,
get: function() {
// 1. get() overrides the node's getter to create an illusion that users are directly accessing the attribute on the node (In reality they are accessing the genotype via nucleus)
// 2. get() also queues up the accessed variable so it can potentially trigger a phenotype update in case there's been a mutation
if (key[0] === '$' || key[0] === '_') {
if (key in $node.Genotype) {
Nucleus.queue($node, key, 'r');
return $node.Genotype[key];
} else if (key[0] === '_') {
// Context Inheritance: If a _variable cannot be found on the current node, propagate upwards until we find a node with the attribute.
var $current = $node;
while ($current = $current.parentNode) { // eslint-disable-line no-cond-assign
if ($current && $current.Genotype && (key in $current.Genotype)) {
Nucleus.queue($current, key, 'r');
return $current.Genotype[key];
}
}
} else {
return null;
}
} else {
// DOM Attributes.
if (key === 'value') {
// The "value" attribute needs a special treatment.
return Object.getOwnPropertyDescriptor(Object.getPrototypeOf($node), key).get.call($node);
} else if (key === 'style') {
return Phenotype.get(key).get.call($node);
} else if (key in $node.Genotype) {
// Otherwise utilize Genotype
return $node.Genotype[key];
} else {
// If the key doesn't exist on the Genotype, it means we're dealing with native DOM attributes we didn't explicitly define on the gene.
// For example, there are many DOM attributes such as "tagName" that come with the node by default.
// These are not something we directly define on a gene object, but we still need to be able to access them..
// In this case we just use the native HTMLElement.prototype accessor
return Phenotype.get(key).get.call($node);
}
}
},
set: function(val) {
// set() overrides the node's setter to create an illusion that users are directly setting an attribute on the node (In reality it's proxied to set the genotype value instead)
// set() also queues up the mutated variable so it can trigger a phenotype update once the current call stack becomes empty
// 0. Context Inheritance: If a _variable cannot be found on the current node, cell propagates upwards until it finds a node with the attribute.
var $current = $node;
if (!(key in $node.Genotype) && key[0] === '_') {
while ($current = $current.parentNode) { // eslint-disable-line no-cond-assign
if ($current && $current.Genotype && (key in $current.Genotype)) {
break;
}
}
}
// 1. Set genotype by default
Genotype.update($current, key, val);
// 2. DOM attribute handling (anything that doesn't start with $ or _)
if (key[0] !== '$' && key[0] !== '_') {
if (key === 'value') {
return Object.getOwnPropertyDescriptor(Object.getPrototypeOf($node), key).set.call($node, val);
} else if (key === 'style' && typeof val === 'object') {
Phenotype.get(key).set.call($node, val);
} else if (typeof val === 'number' || typeof val === 'string' || typeof val === 'boolean') {
$node.setAttribute(key, val);
} else if (typeof val === 'function') {
Phenotype.get(key).set.call($node, val);
}
}
},
});
} catch (e) { /** native element edge case handling for electron **/ }
},
build: function($node) {
// 1. The special attributes "$type", "$text", "$html", "$components" are tracked by default even if not manually defined
['$type', '$text', '$html', '$components'].forEach(function(key) {
if (!(key in $node.Genotype)) Nucleus.set($node, key);
});
// 2. Used for context inheritance. We want to track not just the attributes directly defined on the current node but all the attributes inherited from ancestors.
if ($node.Inheritance) {
$node.Inheritance.forEach(function(key) {
Nucleus.set($node, key);
});
}
// 3. Track all keys defined on the gene object
for (var key in $node.Genotype) {
Nucleus.set($node, key);
}
},
_queue: [],
bind: function($node, v) {
// Binding an attribute to the nucleus.
// 1. No difference if the attribute is just a regular variable
// 2. If the attribute is a function, we create a wrapper function that first executes the original function, and then triggers a phenotype update depending on the queue condition
if (typeof v === 'function') {
var fun = function() {
// In the following code, everything inside Nucleus.tick.call is executed AFTER the last line--v.apply($node, arguments)--because it gets added to the event loop and waits until the next render cycle.
// 1. Schedule phenotype update by wrapping them in a single tick (requestAnimationFrame)
Nucleus.tick.call($root, function() {
// At this point, Nucleus._queue contains all the nodes that have been touched since the last tick.
// We process each node one by one to determine whether to update phenotype and whether to auto-trigger $update().
// Note: If we're in a middle of multiple nested function calls (fnA calls fnB calls fnC), the queue will be processed from the first function (fnA) only,
// This is because the Nucleus._queue will have been drained empty by the time the second function (fnB)'s Nucleus.tick.call reaches this point.
Nucleus._queue.forEach(function($node) {
var needs_update = false;
/*
* At this point, $node.Dirty looks something like this:
* { "_index": 1, "_items": [0,1,2] }
*
* We go through each and compare with the latest version of the Genotype.
* If there's been a change we set the Phenotype and mark it as "needs_update"
*/
for (var key in $node.Dirty) {
if (Gene.freeze($node.Genotype[key]) !== $node.Dirty[key]) { // Update phenotype if the new value is different from old (Dirty)
Phenotype.set($node, key, $node.Genotype[key]);
if (key[0] === '_') { needs_update = true; } // If any of the _ variables have changed, need to call $update
}
}
if (needs_update && '$update' in $node.Genotype && (typeof $node.Genotype.$update === 'function')) {
Phenotype.$update($node);
} else { $node.Dirty = null; }
});
// Remove the $node from the queue
var index = Nucleus._queue.indexOf($node);
if (index !== -1) Nucleus._queue.splice(index, 1);
});
// 2. Run the actual function, which will modify the queue
return v.apply($node, arguments);
};
fun.snapshot = v;
return fun;
} else {
return v;
}
},
queue: function($node, key, mode) {
var val = $node.Genotype[key];
if (mode === 'r') {
/*
* Read mode access => the key was queued as a result of a "get()", which doesn't normally mutate the variable.
*
* But we still need to take into account the cases where its descendants get mutated, which happens when we're dealing with an array or an object. For example:
* - this._items.push(item);
* - this._module.name="cell";
*
* In these cases we didn't directly mutate the variables (Direct mutations would have been something like: this._items=[1,2]; or this._module={name: "cell"};)
* but each variable's value *did* change as a result of each expression. To make sure we don't miss these types, we queue them up with a "r" (read) type.
* But we only need to do this for objects and arrays. (not string, number, etc. because they can't have descendants)
*/
if (typeof val !== 'object' && !Array.isArray(val)) return;
}
if (Nucleus._queue.indexOf($node) === -1) { Nucleus._queue.push($node); }
if (!$node.Dirty) $node.Dirty = {};
if (!(key in $node.Dirty)) {
/*
* Caches the original gene under $node.Dirty when a key is touched.
*
* {
* Dirty: {
* "_index": 1,
* "_items": [0,1,2]
* }
* }
*
*/
$node.Dirty[key] = Gene.freeze($node.Genotype[key]); // stores the original value under "Dirty"
}
},
};
var God = {
/*
* The Creator
* The only purpose of this module is to create cells and get out of the way.
*/
detect: function($context) {
// takes a context, returns all the objects containing thew '$cell' key
if ($context === undefined) $context = this;
return Object.keys($context).filter(function(k) {
try {
if (/webkitStorageInfo|webkitIndexedDB/.test(k) || $context[k] instanceof $root.Element) return false; // Only look for plain javascript object
return $context[k] && Object.prototype.hasOwnProperty.call($context[k], '$cell');
} catch (e) { return false; }
}).map(function(k) {
return $context[k];
});
},
plan: function($context) {
// Prepare the DOM for cell creation by adding prototype methods to nodes.
// As a result, all HTML elements become autonomous.
if ($context === undefined) $context = $root;
else $root = $context;
$context.DocumentFragment.prototype.$build = $context.Element.prototype.$build = function(healthy_gene, inheritance, index, namespace, replace) {
var gene = Genotype.infect(healthy_gene);
var $node = Membrane.build(this, gene, index, namespace, replace);
Genotype.build($node, gene, inheritance || [], index);
Nucleus.build($node);
Phenotype.build($node, $node.Genotype);
return $node;
};
$context.DocumentFragment.prototype.$cell = $context.Element.prototype.$cell = function(gene, options) {
return this.$build(gene, [], null, (options && options.namespace) || null, true);
};
$context.DocumentFragment.prototype.$snapshot = $context.Element.prototype.$snapshot = function() {
var json = JSON.stringify(this.Genotype, function(k, v) {
if (typeof v === 'function' && v.snapshot) { return '(' + v.snapshot.toString() + ')'; }
return v;
});
return JSON.parse(json, function(k, v) {
if (typeof v === 'string' && v.indexOf('function') >= 0) { return eval(v); }
return v;
});
};
if ($root.NodeList && !$root.NodeList.prototype.forEach) $root.NodeList.prototype.forEach = Array.prototype.forEach; // NodeList.forEach override polyfill
},
create: function($context) {
// Automatic cell generation based on declarative rules
return God.detect($context).map(function(gene) {
return $context.document.body.$build(gene, []);
});
},
};
// For testing
if (typeof exports !== 'undefined') {
var x = {
Phenotype: Phenotype,
Genotype: Genotype,
Nucleus: Nucleus,
Gene: Gene,
Membrane: Membrane,
God: God,
plan: God.plan.bind(God),
create: God.create.bind(God),
};
if (typeof module !== 'undefined' && module.exports) { exports = module.exports = x; }
exports = x;
} else {
God.plan(this);
if (this.addEventListener) {
// Let there be Cell
this.addEventListener('load', function() {
God.create(this);
});
}
}
}(this));