Skip to content

[SIGMOD'23] Data Stream Clustering: An In-depth Empirical Study [ICDM'24] MOStream: A Modular and Self-Optimizing Data Stream Clustering Algorithm

License

Notifications You must be signed in to change notification settings

intellistream/Sesame

Repository files navigation

Sesame

version version pyversion os PyPI - License DOI

About

Sesame is scalable stream mining library on modern hardware written in C++

By now Sesame contains several representative real-world stream clustering algorithms and synthetic algorithms

Quick Start

Installation

pip3 install pysame

Python Example

#!python3

from pysame import Benne, Birch, BenneObj

X = [[0, 1], [0.3, 1], [-0.3, 1], [0, -1], [0.3, -1], [-0.3, -1]]

# run birch algorithm
brc = Birch(
    n_clusters=2,
    dim=2,
    distance_threshold=0.5,
)
print(brc.partial_fit(X).predict(X))

# run benne algorithm
bne = Benne(
    n_clusters=2,
    dim=2,
    distance_threshold=0.5,
    obj=BenneObj.accuracy,
)
print(bne.partial_fit(X).predict(X))

Build Sesame

Prerequisites

Checkout Source Code

git clone https://github.com/intellistream/Sesame --recursive --depth=1
cd Sesame

Build

mkdir build
cd build
cmake .. -DCMAKE_BUILD_TYPE=Release
make -j$(nproc)

Run Tests

Download the datasets from Zenodo and put them in the datasets directory:

cd Sesame/datasets
pip3 install zenodo_get
zenodo_get 8210331

Run the tests:

cd Sesame/build/test
./google_test

Real-world algorithms

Algorithm Window Model Outlier Detection Summarizing Data Structure Offline Refinement
BIRCH LandmarkWM OutlierD CFT
CluStream LandmarkWM OutlierD-T MCs
DenStream DampedWM OutlierD-BT MCs
DStream DampedWM OutlierD-T Grids
StreamKM++ LandmarkWM NoOutlierD CoreT
DBStream DampedWM OutlierD-T MCs
EDMStream DampedWM OutlierD-BT DPT
SL-KMeans SlidingWM NoOutlierD AMS

Synthetic algorithms

Algorithm Window Model Outlier Detection Summarizing Data Structure Offline Refinement
G1 LandmarkWM OutlierD MCs
G2 LandmarkWM OutlierD MCs
G3 LandmarkWM OutlierD CFT
G4 SlidingWM OutlierD MCs
G5 DampedWM OutlierD-B MCs
G6 LandmarkWM NoOutlierD MCs
G8 LandmarkWM OutlierD MCs
G9 LandmarkWM OutlierD Grids
G10 LandmarkWM OutlierD DPT
G11 LandmarkWM OutlierD-T MCs
G12 LandmarkWM OutlierD-B MCs
G13 LandmarkWM OutlierD-BT MCs
G14 LandmarkWM OutlierD AMS
G15 LandmarkWM OutlierD CoreT

Datasets

DataSet Length Dimension Cluster Number
CoverType 581012 54 7
KDD-99 4898431 41 23
Insects 905145 33 24
Sensor 2219803 5 55
EDS 45690, 100270, 150645, 200060, 245270 2 75, 145, 218, 289, 363
ODS 94720,97360,100000 2 90, 90, 90

Datasets can download from zenodo: https://zenodo.org/records/8210331

How to Cite Sesame

  • [SIGMOD 2023] Xin Wang and Zhengru Wang and Zhenyu Wu and Shuhao Zhang and Xuanhua Shi and Li Lu. Data Stream Clustering: An In-depth Empirical Study, SIGMOD, 2023
@inproceedings{wang2023sesame,
	title        = {Data Stream Clustering: An In-depth Empirical Study},
	author       = {Xin Wang and Zhengru Wang and Zhenyu Wu and Shuhao Zhang and Xuanhua Shi and Li Lu},
	year         = 2023,
	booktitle    = {Proceedings of the 2023 International Conference on Management of Data (SIGMOD)},
	location     = {Seattle, WA, USA},
	publisher    = {Association for Computing Machinery},
	address      = {New York, NY, USA},
	series       = {SIGMOD '23},
	abbr         = {SIGMOD},
	bibtex_show  = {true},
	selected     = {true},
	pdf          = {papers/Sesame.pdf},
	code         = {https://github.com/intellistream/Sesame},
	doi	         = {10.1145/3589307},
    url          = {https://doi.org/10.1145/3589307}
}

About

[SIGMOD'23] Data Stream Clustering: An In-depth Empirical Study [ICDM'24] MOStream: A Modular and Self-Optimizing Data Stream Clustering Algorithm

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published