From e60adb149e5a7f6fde2634be6df87bf0f507e938 Mon Sep 17 00:00:00 2001 From: ATMxsp01 Date: Tue, 24 Dec 2024 17:40:50 +0800 Subject: [PATCH 1/6] Add qwen2-vl example --- .../HuggingFace/Multimodal/qwen2-vl/README.md | 0 .../Multimodal/qwen2-vl/generate.py | 120 ++++++++++++++++++ .../llm/src/ipex_llm/transformers/__init__.py | 5 + python/llm/src/ipex_llm/transformers/model.py | 4 + 4 files changed, 129 insertions(+) create mode 100644 python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/README.md create mode 100644 python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/generate.py diff --git a/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/README.md b/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/README.md new file mode 100644 index 00000000000..e69de29bb2d diff --git a/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/generate.py b/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/generate.py new file mode 100644 index 00000000000..740890a801e --- /dev/null +++ b/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/generate.py @@ -0,0 +1,120 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse +import numpy as np + +from transformers import Qwen2VLForConditionalGeneration, AutoProcessor +from ipex_llm.transformers import Qwen2VLForConditionalGeneration +from qwen_vl_utils import process_vision_info +from ipex_llm import optimize_model + + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using generate() API for Qwen2-VL-7B-Instruct model') + parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen2-VL-7B-Instruct", + help='The huggingface repo id for the Qwen2-VL model to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--prompt', type=str, default="Describe this image.", + help='Prompt to infer') + parser.add_argument('--image-url-or-path', type=str, + default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg' , + help='The URL or path to the image to infer') + + parser.add_argument('--n-predict', type=int, default=32, + help='Max tokens to predict') + parser.add_argument('--modelscope', action="store_true", default=False, + help="Use models from modelscope") + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + model = Qwen2VLForConditionalGeneration.from_pretrained(model_path, + load_in_4bit=True, + trust_remote_code=True, + torch_dtype='auto', + low_cpu_mem_usage=True, + use_cache=True,) + + model = optimize_model(model, low_bit='sym_int4', modules_to_not_convert=["visual"]) + + # Use .float() for better output, and use .half() for better speed + model = model.half().to("xpu") + + # The following code for generation is adapted from https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct#quickstart + + # The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage. + min_pixels = 256*28*28 + max_pixels = 1280*28*28 + processor = AutoProcessor.from_pretrained(model_path, min_pixels=min_pixels, max_pixels=max_pixels) + + prompt = args.prompt + image_path = args.image_url_or_path + + messages = [ + { + "role": "user", + "content": [ + { + "type": "image", + "image": image_path, + }, + {"type": "text", "text": prompt}, + ], + } + ] + text = processor.apply_chat_template( + messages, tokenize=False, add_generation_prompt=True + ) + image_inputs, video_inputs = process_vision_info(messages) + inputs = processor( + text=[text], + images=image_inputs, + videos=video_inputs, + padding=True, + return_tensors="pt", + ) + inputs = inputs.to('xpu') + + with torch.inference_mode(): + # warmup + generated_ids = model.generate( + **inputs, + max_new_tokens=args.n_predict + ) + + st = time.time() + generated_ids = model.generate( + **inputs, + max_new_tokens=args.n_predict + ) + torch.xpu.synchronize() + end = time.time() + generated_ids = generated_ids.cpu() + generated_ids = [ + output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, generated_ids) + ] + + response = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] + print(f'Inference time: {end-st} s') + print('-'*20, 'Input Image', '-'*20) + print(image_path) + print('-'*20, 'Prompt', '-'*20) + print(prompt) + print('-'*20, 'Output', '-'*20) + print(response) diff --git a/python/llm/src/ipex_llm/transformers/__init__.py b/python/llm/src/ipex_llm/transformers/__init__.py index 6904e897fbe..fe5a5bfb1d1 100644 --- a/python/llm/src/ipex_llm/transformers/__init__.py +++ b/python/llm/src/ipex_llm/transformers/__init__.py @@ -21,5 +21,10 @@ AutoModelForSequenceClassification, AutoModelForMaskedLM, \ AutoModelForNextSentencePrediction, AutoModelForMultipleChoice, \ AutoModelForTokenClassification + +import transformers +if transformers.__version__ >= '4.45.0': + from .model import Qwen2VLForConditionalGeneration + from .modelling_bigdl import * from .pipeline_parallel import init_pipeline_parallel, PPModelWorker diff --git a/python/llm/src/ipex_llm/transformers/model.py b/python/llm/src/ipex_llm/transformers/model.py index 3e68d8ac2d2..54bb66bacd1 100644 --- a/python/llm/src/ipex_llm/transformers/model.py +++ b/python/llm/src/ipex_llm/transformers/model.py @@ -839,3 +839,7 @@ class AutoModelForMultipleChoice(_BaseAutoModelClass): class AutoModelForTokenClassification(_BaseAutoModelClass): HF_Model = transformers.AutoModelForTokenClassification + +if transformers.__version__ >= '4.45.0': + class Qwen2VLForConditionalGeneration(_BaseAutoModelClass): + HF_MODEL = transformers.Qwen2VLForConditionalGeneration \ No newline at end of file From 3256fe458087dbde2af61bffe707dd7186ed4cd9 Mon Sep 17 00:00:00 2001 From: ATMxsp01 Date: Mon, 30 Dec 2024 17:16:37 +0800 Subject: [PATCH 2/6] complete generate.py & readme --- .../HuggingFace/Multimodal/qwen2-vl/README.md | 151 ++++++++++++++++++ .../Multimodal/qwen2-vl/generate.py | 17 +- python/llm/src/ipex_llm/transformers/model.py | 2 +- 3 files changed, 163 insertions(+), 7 deletions(-) diff --git a/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/README.md b/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/README.md index e69de29bb2d..ffef25a8fcb 100644 --- a/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/README.md +++ b/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/README.md @@ -0,0 +1,151 @@ +# Qwen2-VL +In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Qwen-VL models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) (or [Qwen/Qwen2-VL-7B-Instruct](https://www.modelscope.cn/models/Qwen/Qwen2-VL-7B-Instruct) for ModelScope) as a reference Qwen2-VL model. + +## 0. Requirements +To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. + +## Example: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a Qwen2-VL model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs. +### 1. Install +#### 1.1 Installation on Linux +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.11 +conda activate llm +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ + +pip install transformers==4.45.0 # install transformers which supports Qwen2-VL +pip install accelerate==0.33.0 +pip install qwen_vl_utils +pip install "trl<0.12.0" + +# [optional] only needed if you would like to use ModelScope as model hub +pip install modelscope==1.21.0 +pip install addict simplejson python-dateutil sortedcontainers +``` + +#### 1.2 Installation on Windows +We suggest using conda to manage environment: +```bash +conda create -n llm python=3.11 libuv +conda activate llm + +# below command will install intel_extension_for_pytorch==2.1.10+xpu as default +pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ + +pip install transformers==4.45.0 # install transformers which supports Qwen2-VL +pip install accelerate==0.33.0 +pip install qwen_vl_utils +pip install "trl<0.12.0" + +# [optional] only needed if you would like to use ModelScope as model hub +pip install modelscope==1.21.0 +pip install addict simplejson python-dateutil sortedcontainers +``` + +### 2. Configures OneAPI environment variables for Linux + +> [!NOTE] +> Skip this step if you are running on Windows. + +This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI. + +```bash +source /opt/intel/oneapi/setvars.sh +``` + +### 3. Runtime Configurations +For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device. +#### 3.1 Configurations for Linux +
+ +For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series + +```bash +export USE_XETLA=OFF +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +export SYCL_CACHE_PERSISTENT=1 +``` + +
+ +
+ +For Intel Data Center GPU Max Series + +```bash +export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so +export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 +export SYCL_CACHE_PERSISTENT=1 +export ENABLE_SDP_FUSION=1 +``` +> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`. +
+ +
+ +For Intel iGPU + +```bash +export SYCL_CACHE_PERSISTENT=1 +``` + +
+ +#### 3.2 Configurations for Windows +
+ +For Intel iGPU and Intel Arc™ A-Series Graphics + +```cmd +set SYCL_CACHE_PERSISTENT=1 +``` + +
+ + +> [!NOTE] +> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. +### 4. Running examples + +```bash +# for Hugging Face model hub +python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --image-url-or-path IMAGE_URL_OR_PATH + +# for ModelScope model hub +python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --image-url-or-path IMAGE_URL_OR_PATH --modelscope +``` + +Arguments info: +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the **Hugging Face** or **ModelScope** repo id for the Qwen2-VL model (e.g. `Qwen/Qwen2-VL-7B-Instruct`) to be downloaded, or the path to the checkpoint folder. It is default to be `'Qwen/Qwen2-VL-7B-Instruct'`. +- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`. +- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'Describe this image.'`. +- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. +- `--modelscope`: using **ModelScope** as model hub instead of **Hugging Face**. + +#### Sample Output +##### [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) +```log +Inference time: xxxx s +-------------------- Input Image -------------------- +http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg +-------------------- Prompt -------------------- +Describe this image. +-------------------- Output -------------------- +The image depicts a young child holding a small white teddy bear. The teddy bear is dressed in a pink outfit, which includes a pink skirt and a +``` + +```log +Inference time: xxxx s +-------------------- Input Image -------------------- +http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg +-------------------- Prompt -------------------- +请描述这幅图片 +-------------------- Output -------------------- +这是一张小女孩抱着一个白色的小熊玩偶的图片。小女孩穿着一件粉红色的条纹连衣裙,手里抱着的小熊玩偶 +``` + +The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)): + + diff --git a/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/generate.py b/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/generate.py index 740890a801e..19b85d8c9bc 100644 --- a/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/generate.py +++ b/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/generate.py @@ -19,10 +19,8 @@ import argparse import numpy as np -from transformers import Qwen2VLForConditionalGeneration, AutoProcessor from ipex_llm.transformers import Qwen2VLForConditionalGeneration from qwen_vl_utils import process_vision_info -from ipex_llm import optimize_model if __name__ == '__main__': @@ -42,16 +40,23 @@ help="Use models from modelscope") args = parser.parse_args() + if args.modelscope: + from modelscope import AutoProcessor + model_hub = 'modelscope' + else: + from transformers import AutoProcessor + model_hub = 'huggingface' + model_path = args.repo_id_or_model_path model = Qwen2VLForConditionalGeneration.from_pretrained(model_path, - load_in_4bit=True, trust_remote_code=True, torch_dtype='auto', + modules_to_not_convert=["visual"], + load_in_4bit=True, low_cpu_mem_usage=True, - use_cache=True,) - - model = optimize_model(model, low_bit='sym_int4', modules_to_not_convert=["visual"]) + use_cache=True, + model_hub=model_hub) # Use .float() for better output, and use .half() for better speed model = model.half().to("xpu") diff --git a/python/llm/src/ipex_llm/transformers/model.py b/python/llm/src/ipex_llm/transformers/model.py index 54bb66bacd1..2815f3e8b59 100644 --- a/python/llm/src/ipex_llm/transformers/model.py +++ b/python/llm/src/ipex_llm/transformers/model.py @@ -842,4 +842,4 @@ class AutoModelForTokenClassification(_BaseAutoModelClass): if transformers.__version__ >= '4.45.0': class Qwen2VLForConditionalGeneration(_BaseAutoModelClass): - HF_MODEL = transformers.Qwen2VLForConditionalGeneration \ No newline at end of file + HF_Model = transformers.Qwen2VLForConditionalGeneration \ No newline at end of file From 40ac04a6641292f8d1cc74bfc8b53fc625177b65 Mon Sep 17 00:00:00 2001 From: ATMxsp01 Date: Mon, 30 Dec 2024 17:23:56 +0800 Subject: [PATCH 3/6] improve lint style --- python/llm/src/ipex_llm/transformers/model.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/python/llm/src/ipex_llm/transformers/model.py b/python/llm/src/ipex_llm/transformers/model.py index 2815f3e8b59..0b5b70e16e9 100644 --- a/python/llm/src/ipex_llm/transformers/model.py +++ b/python/llm/src/ipex_llm/transformers/model.py @@ -840,6 +840,7 @@ class AutoModelForMultipleChoice(_BaseAutoModelClass): class AutoModelForTokenClassification(_BaseAutoModelClass): HF_Model = transformers.AutoModelForTokenClassification + if transformers.__version__ >= '4.45.0': class Qwen2VLForConditionalGeneration(_BaseAutoModelClass): - HF_Model = transformers.Qwen2VLForConditionalGeneration \ No newline at end of file + HF_Model = transformers.Qwen2VLForConditionalGeneration From 8d1167e9b860aa373ff335d636e51cb7dd45dd3f Mon Sep 17 00:00:00 2001 From: ATMxsp01 Date: Mon, 6 Jan 2025 15:16:49 +0800 Subject: [PATCH 4/6] update 1-6 --- .../GPU/HuggingFace/Multimodal/qwen2-vl/README.md | 14 ++++++-------- .../HuggingFace/Multimodal/qwen2-vl/generate.py | 9 ++++----- 2 files changed, 10 insertions(+), 13 deletions(-) diff --git a/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/README.md b/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/README.md index ffef25a8fcb..7afa9e9e482 100644 --- a/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/README.md +++ b/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/README.md @@ -21,8 +21,7 @@ pip install qwen_vl_utils pip install "trl<0.12.0" # [optional] only needed if you would like to use ModelScope as model hub -pip install modelscope==1.21.0 -pip install addict simplejson python-dateutil sortedcontainers +pip install modelscope[datasets]==1.21.1 ``` #### 1.2 Installation on Windows @@ -40,8 +39,7 @@ pip install qwen_vl_utils pip install "trl<0.12.0" # [optional] only needed if you would like to use ModelScope as model hub -pip install modelscope==1.21.0 -pip install addict simplejson python-dateutil sortedcontainers +pip install modelscope[datasets]==1.21.1 ``` ### 2. Configures OneAPI environment variables for Linux @@ -131,9 +129,9 @@ Inference time: xxxx s -------------------- Input Image -------------------- http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg -------------------- Prompt -------------------- -Describe this image. +图片里有什么? -------------------- Output -------------------- -The image depicts a young child holding a small white teddy bear. The teddy bear is dressed in a pink outfit, which includes a pink skirt and a +图片里有一个小女孩,她穿着粉红色的条纹连衣裙,手里拿着一个白色的毛绒玩具。背景中有一堵石墙和一些 ``` ```log @@ -141,9 +139,9 @@ Inference time: xxxx s -------------------- Input Image -------------------- http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg -------------------- Prompt -------------------- -请描述这幅图片 +What is in the image? -------------------- Output -------------------- -这是一张小女孩抱着一个白色的小熊玩偶的图片。小女孩穿着一件粉红色的条纹连衣裙,手里抱着的小熊玩偶 +The image shows a young child holding a small white teddy bear dressed in a pink outfit. The child is standing in front of a stone wall with red flowers ``` The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)): diff --git a/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/generate.py b/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/generate.py index 19b85d8c9bc..3cf8ef952f7 100644 --- a/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/generate.py +++ b/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/generate.py @@ -28,7 +28,7 @@ parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen2-VL-7B-Instruct", help='The huggingface repo id for the Qwen2-VL model to be downloaded' ', or the path to the huggingface checkpoint folder') - parser.add_argument('--prompt', type=str, default="Describe this image.", + parser.add_argument('--prompt', type=str, default="图片里有什么?", help='Prompt to infer') parser.add_argument('--image-url-or-path', type=str, default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg' , @@ -50,11 +50,10 @@ model_path = args.repo_id_or_model_path model = Qwen2VLForConditionalGeneration.from_pretrained(model_path, - trust_remote_code=True, - torch_dtype='auto', - modules_to_not_convert=["visual"], load_in_4bit=True, - low_cpu_mem_usage=True, + optimize_model=True, + trust_remote_code=True, + modules_to_not_convert=["vision"], use_cache=True, model_hub=model_hub) From b37d4bc1c822f354b512fd37cf53980cc11216e6 Mon Sep 17 00:00:00 2001 From: ATMxsp01 Date: Mon, 6 Jan 2025 15:54:53 +0800 Subject: [PATCH 5/6] update main readme --- README.md | 2 +- README.zh-CN.md | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 4fc6c6b65de..c0653ddfa34 100644 --- a/README.md +++ b/README.md @@ -289,7 +289,7 @@ Over 70 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM | Qwen2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM), [C++ link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) | | Qwen2.5 | | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2.5) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM), [C++ link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) | | Qwen-VL | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl) | [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen-vl) | -| Qwen2-VL || [link](python/llm/example/GPU/PyTorch-Models/Model/qwen2-vl) | +| Qwen2-VL || [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl) | | Qwen2-Audio | | [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen2-audio) | | Aquila | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila) | [link](python/llm/example/GPU/HuggingFace/LLM/aquila) | | Aquila2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila2) | [link](python/llm/example/GPU/HuggingFace/LLM/aquila2) | diff --git a/README.zh-CN.md b/README.zh-CN.md index 86293807e57..2edd4776d70 100644 --- a/README.zh-CN.md +++ b/README.zh-CN.md @@ -284,7 +284,7 @@ See the demo of running [*Text-Generation-WebUI*](https://ipex-llm.readthedocs.i | Qwen2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen2) | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM), [C++ link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) | | Qwen2.5 | | [link](python/llm/example/GPU/HuggingFace/LLM/qwen2.5) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM), [C++ link](python/llm/example/NPU/HF-Transformers-AutoModels/LLM/CPP_Examples) | | Qwen-VL | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/qwen-vl) | [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen-vl) | -| Qwen2-VL || [link](python/llm/example/GPU/PyTorch-Models/Model/qwen2-vl) | +| Qwen2-VL || [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl) | | Qwen2-Audio | | [link](python/llm/example/GPU/HuggingFace/Multimodal/qwen2-audio) | | Aquila | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila) | [link](python/llm/example/GPU/HuggingFace/LLM/aquila) | | Aquila2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/aquila2) | [link](python/llm/example/GPU/HuggingFace/LLM/aquila2) | From 98c4a8cd62e498211e748b397939c0e75a5d3f1f Mon Sep 17 00:00:00 2001 From: Yuwen Hu Date: Mon, 13 Jan 2025 15:21:51 +0800 Subject: [PATCH 6/6] Format and other small fixes --- .../HuggingFace/Multimodal/qwen2-vl/README.md | 2 +- .../Multimodal/qwen2-vl/generate.py | 76 ++++++++++--------- 2 files changed, 40 insertions(+), 38 deletions(-) diff --git a/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/README.md b/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/README.md index 7afa9e9e482..0a0cea48ea7 100644 --- a/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/README.md +++ b/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/README.md @@ -1,5 +1,5 @@ # Qwen2-VL -In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Qwen-VL models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) (or [Qwen/Qwen2-VL-7B-Instruct](https://www.modelscope.cn/models/Qwen/Qwen2-VL-7B-Instruct) for ModelScope) as a reference Qwen2-VL model. +In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Qwen2-VL models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) (or [Qwen/Qwen2-VL-7B-Instruct](https://www.modelscope.cn/models/Qwen/Qwen2-VL-7B-Instruct) for ModelScope) as a reference Qwen2-VL model. ## 0. Requirements To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. diff --git a/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/generate.py b/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/generate.py index 3cf8ef952f7..39373ef4b1b 100644 --- a/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/generate.py +++ b/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/generate.py @@ -24,7 +24,7 @@ if __name__ == '__main__': - parser = argparse.ArgumentParser(description='Predict Tokens using generate() API for Qwen2-VL-7B-Instruct model') + parser = argparse.ArgumentParser(description='Predict Tokens using generate() API for Qwen2-VL model') parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen2-VL-7B-Instruct", help='The huggingface repo id for the Qwen2-VL model to be downloaded' ', or the path to the huggingface checkpoint folder') @@ -50,19 +50,21 @@ model_path = args.repo_id_or_model_path model = Qwen2VLForConditionalGeneration.from_pretrained(model_path, - load_in_4bit=True, - optimize_model=True, - trust_remote_code=True, - modules_to_not_convert=["vision"], - use_cache=True, - model_hub=model_hub) + load_in_4bit=True, + optimize_model=True, + trust_remote_code=True, + modules_to_not_convert=["vision"], + use_cache=True, + model_hub=model_hub) # Use .float() for better output, and use .half() for better speed model = model.half().to("xpu") # The following code for generation is adapted from https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct#quickstart - # The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage. + # The default range for the number of visual tokens per image in the model is 4-16384. + # You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, + # to balance speed and memory usage. min_pixels = 256*28*28 max_pixels = 1280*28*28 processor = AutoProcessor.from_pretrained(model_path, min_pixels=min_pixels, max_pixels=max_pixels) @@ -70,49 +72,49 @@ prompt = args.prompt image_path = args.image_url_or_path - messages = [ - { - "role": "user", - "content": [ - { - "type": "image", - "image": image_path, - }, - {"type": "text", "text": prompt}, - ], - } - ] - text = processor.apply_chat_template( - messages, tokenize=False, add_generation_prompt=True - ) - image_inputs, video_inputs = process_vision_info(messages) - inputs = processor( - text=[text], - images=image_inputs, - videos=video_inputs, - padding=True, - return_tensors="pt", - ) - inputs = inputs.to('xpu') - with torch.inference_mode(): - # warmup + messages = [ + { + "role": "user", + "content": [ + { + "type": "image", + "image": image_path, + }, + {"type": "text", "text": prompt}, + ], + } + ] + text = processor.apply_chat_template( + messages, tokenize=False, add_generation_prompt=True + ) + image_inputs, video_inputs = process_vision_info(messages) + inputs = processor( + text=[text], + images=image_inputs, + videos=video_inputs, + padding=True, + return_tensors="pt", + ) + inputs = inputs.to('xpu') + + # ipex_llm model needs a warmup, then inference time can be accurate generated_ids = model.generate( **inputs, max_new_tokens=args.n_predict - ) + ) st = time.time() generated_ids = model.generate( **inputs, max_new_tokens=args.n_predict - ) + ) torch.xpu.synchronize() end = time.time() generated_ids = generated_ids.cpu() generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, generated_ids) - ] + ] response = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] print(f'Inference time: {end-st} s')