diff --git a/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/README.md b/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/README.md new file mode 100644 index 00000000000..e69de29bb2d diff --git a/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/generate.py b/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/generate.py new file mode 100644 index 00000000000..740890a801e --- /dev/null +++ b/python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/generate.py @@ -0,0 +1,120 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import torch +import time +import argparse +import numpy as np + +from transformers import Qwen2VLForConditionalGeneration, AutoProcessor +from ipex_llm.transformers import Qwen2VLForConditionalGeneration +from qwen_vl_utils import process_vision_info +from ipex_llm import optimize_model + + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Predict Tokens using generate() API for Qwen2-VL-7B-Instruct model') + parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen2-VL-7B-Instruct", + help='The huggingface repo id for the Qwen2-VL model to be downloaded' + ', or the path to the huggingface checkpoint folder') + parser.add_argument('--prompt', type=str, default="Describe this image.", + help='Prompt to infer') + parser.add_argument('--image-url-or-path', type=str, + default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg' , + help='The URL or path to the image to infer') + + parser.add_argument('--n-predict', type=int, default=32, + help='Max tokens to predict') + parser.add_argument('--modelscope', action="store_true", default=False, + help="Use models from modelscope") + + args = parser.parse_args() + model_path = args.repo_id_or_model_path + + model = Qwen2VLForConditionalGeneration.from_pretrained(model_path, + load_in_4bit=True, + trust_remote_code=True, + torch_dtype='auto', + low_cpu_mem_usage=True, + use_cache=True,) + + model = optimize_model(model, low_bit='sym_int4', modules_to_not_convert=["visual"]) + + # Use .float() for better output, and use .half() for better speed + model = model.half().to("xpu") + + # The following code for generation is adapted from https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct#quickstart + + # The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage. + min_pixels = 256*28*28 + max_pixels = 1280*28*28 + processor = AutoProcessor.from_pretrained(model_path, min_pixels=min_pixels, max_pixels=max_pixels) + + prompt = args.prompt + image_path = args.image_url_or_path + + messages = [ + { + "role": "user", + "content": [ + { + "type": "image", + "image": image_path, + }, + {"type": "text", "text": prompt}, + ], + } + ] + text = processor.apply_chat_template( + messages, tokenize=False, add_generation_prompt=True + ) + image_inputs, video_inputs = process_vision_info(messages) + inputs = processor( + text=[text], + images=image_inputs, + videos=video_inputs, + padding=True, + return_tensors="pt", + ) + inputs = inputs.to('xpu') + + with torch.inference_mode(): + # warmup + generated_ids = model.generate( + **inputs, + max_new_tokens=args.n_predict + ) + + st = time.time() + generated_ids = model.generate( + **inputs, + max_new_tokens=args.n_predict + ) + torch.xpu.synchronize() + end = time.time() + generated_ids = generated_ids.cpu() + generated_ids = [ + output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, generated_ids) + ] + + response = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] + print(f'Inference time: {end-st} s') + print('-'*20, 'Input Image', '-'*20) + print(image_path) + print('-'*20, 'Prompt', '-'*20) + print(prompt) + print('-'*20, 'Output', '-'*20) + print(response) diff --git a/python/llm/src/ipex_llm/transformers/__init__.py b/python/llm/src/ipex_llm/transformers/__init__.py index 6904e897fbe..fe5a5bfb1d1 100644 --- a/python/llm/src/ipex_llm/transformers/__init__.py +++ b/python/llm/src/ipex_llm/transformers/__init__.py @@ -21,5 +21,10 @@ AutoModelForSequenceClassification, AutoModelForMaskedLM, \ AutoModelForNextSentencePrediction, AutoModelForMultipleChoice, \ AutoModelForTokenClassification + +import transformers +if transformers.__version__ >= '4.45.0': + from .model import Qwen2VLForConditionalGeneration + from .modelling_bigdl import * from .pipeline_parallel import init_pipeline_parallel, PPModelWorker diff --git a/python/llm/src/ipex_llm/transformers/model.py b/python/llm/src/ipex_llm/transformers/model.py index 3e68d8ac2d2..54bb66bacd1 100644 --- a/python/llm/src/ipex_llm/transformers/model.py +++ b/python/llm/src/ipex_llm/transformers/model.py @@ -839,3 +839,7 @@ class AutoModelForMultipleChoice(_BaseAutoModelClass): class AutoModelForTokenClassification(_BaseAutoModelClass): HF_Model = transformers.AutoModelForTokenClassification + +if transformers.__version__ >= '4.45.0': + class Qwen2VLForConditionalGeneration(_BaseAutoModelClass): + HF_MODEL = transformers.Qwen2VLForConditionalGeneration \ No newline at end of file