diff --git a/python/llm/example/CPU/HF-Transformers-AutoModels/Model/cohere/README.md b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/cohere/README.md index f75ac825b11..c8b240af7f0 100644 --- a/python/llm/example/CPU/HF-Transformers-AutoModels/Model/cohere/README.md +++ b/python/llm/example/CPU/HF-Transformers-AutoModels/Model/cohere/README.md @@ -17,7 +17,7 @@ conda activate llm # install ipex-llm with 'all' option pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu -pip install transformers==4.40.0 +pip install "transformers>=4.40.0" ``` On Windows: @@ -27,7 +27,7 @@ conda create -n llm python=3.11 conda activate llm pip install --pre --upgrade ipex-llm[all] -pip install transformers==4.40.0 +pip install "transformers>=4.40.0" ``` ### 2. Run diff --git a/python/llm/example/CPU/PyTorch-Models/Model/cohere/README.md b/python/llm/example/CPU/PyTorch-Models/Model/cohere/README.md index 2abcc99e29c..e42629be360 100644 --- a/python/llm/example/CPU/PyTorch-Models/Model/cohere/README.md +++ b/python/llm/example/CPU/PyTorch-Models/Model/cohere/README.md @@ -18,7 +18,7 @@ conda activate llm # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu -pip install transformers==4.40.0 +pip install "transformers>=4.40.0" ``` On Windows: @@ -28,7 +28,7 @@ conda create -n llm python=3.11 conda activate llm pip install --pre --upgrade ipex-llm[all] -pip install transformers==4.40.0 +pip install "transformers>=4.40.0" ``` ### 2. Run diff --git a/python/llm/example/GPU/HuggingFace/LLM/cohere/README.md b/python/llm/example/GPU/HuggingFace/LLM/cohere/README.md index 4214da3fda4..f42cadae8d2 100644 --- a/python/llm/example/GPU/HuggingFace/LLM/cohere/README.md +++ b/python/llm/example/GPU/HuggingFace/LLM/cohere/README.md @@ -17,7 +17,7 @@ conda create -n llm python=3.11 conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ -pip install transformers==4.40.0 +pip install "transformers>=4.40.0" conda install -c conda-forge -y gperftools=2.10 # to enable tcmalloc ``` @@ -29,7 +29,7 @@ conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ -pip install transformers==4.40.0 +pip install "transformers>=4.40.0" ``` ### 2. Configures OneAPI environment variables for Linux diff --git a/python/llm/example/GPU/PyTorch-Models/Model/cohere/README.md b/python/llm/example/GPU/PyTorch-Models/Model/cohere/README.md index 4214da3fda4..f42cadae8d2 100644 --- a/python/llm/example/GPU/PyTorch-Models/Model/cohere/README.md +++ b/python/llm/example/GPU/PyTorch-Models/Model/cohere/README.md @@ -17,7 +17,7 @@ conda create -n llm python=3.11 conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ -pip install transformers==4.40.0 +pip install "transformers>=4.40.0" conda install -c conda-forge -y gperftools=2.10 # to enable tcmalloc ``` @@ -29,7 +29,7 @@ conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ -pip install transformers==4.40.0 +pip install "transformers>=4.40.0" ``` ### 2. Configures OneAPI environment variables for Linux diff --git a/python/llm/src/ipex_llm/transformers/convert.py b/python/llm/src/ipex_llm/transformers/convert.py index c0d94b6e030..e4dfbc2a3d5 100644 --- a/python/llm/src/ipex_llm/transformers/convert.py +++ b/python/llm/src/ipex_llm/transformers/convert.py @@ -1372,13 +1372,23 @@ def _optimize_post(model, lightweight_bmm=False): qwen2_attention_forward) elif model.config.model_type == "cohere": # for CohereForAI/c4ai-command-r-v01 + invalidInputError(version.parse(trans_version) >= version.parse("4.40.0"), + "Please upgrade transformers to 4.40.0 or higher version " + "to run Mixtral models.") modeling_module_name = model.__class__.__module__ module = importlib.import_module(modeling_module_name) + if version.parse(trans_version) >= version.parse("4.41.0"): + from ipex_llm.transformers.models.cohere import cohere_model_forward_4_41 + convert_forward(model, + module.CohereModel, + cohere_model_forward_4_41) + else: + from ipex_llm.transformers.models.cohere import cohere_model_forward + convert_forward(model, + module.CohereModel, + cohere_model_forward) + from ipex_llm.transformers.models.cohere import cohere_attention_forward - from ipex_llm.transformers.models.cohere import cohere_model_forward - convert_forward(model, - module.CohereModel, - cohere_model_forward) convert_forward(model, module.CohereAttention, cohere_attention_forward) diff --git a/python/llm/src/ipex_llm/transformers/models/cohere.py b/python/llm/src/ipex_llm/transformers/models/cohere.py index 5e3437e3a42..fd33e515c0f 100644 --- a/python/llm/src/ipex_llm/transformers/models/cohere.py +++ b/python/llm/src/ipex_llm/transformers/models/cohere.py @@ -191,6 +191,135 @@ def cohere_model_forward( ) +def cohere_model_forward_4_41( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, +): + use_cache = use_cache if use_cache is not None \ + else self.config.use_cache + if use_cache and use_quantize_kv_cache(self.layers[0].mlp.up_proj, input_ids): + if not isinstance(past_key_values, DynamicFp8Cache): + past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values) + output_attentions = output_attentions if output_attentions is not None \ + else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None + else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + invalidInputError(False, + "You cannot specify both input_ids and inputs_embeds at the same time") + + if self.gradient_checkpointing and self.training and use_cache: + invalidInputError(False, + "`use_cache=True` is incompatible " + "with gradient checkpointing. Setting `use_cache=False`.") + use_cache = False + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + + past_seen_tokens = 0 + return_legacy_cache = False + # kept for BC (non `Cache` `past_key_values` inputs) + if use_cache and not isinstance(past_key_values, Cache): + return_legacy_cache = True + past_key_values = DynamicCache.from_legacy_cache(past_key_values) + + if cache_position is None: + past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 + cache_position = torch.arange( + past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device + ) + + if position_ids is None: + position_ids = cache_position.unsqueeze(0) + + causal_mask = self._update_causal_mask( + attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions + ) + + # embed positions + hidden_states = inputs_embeds + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + next_decoder_cache = None + + for decoder_layer in self.layers: + if output_hidden_states: + all_hidden_states += (hidden_states,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + causal_mask, + position_ids, + past_key_values, + output_attentions, + use_cache, + cache_position, + ) + else: + # ipex-llm changes + curr_device = decoder_layer.input_layernorm.weight.device + if causal_mask is not None: + causal_mask = causal_mask.to(curr_device) + if position_ids is not None: + position_ids = position_ids.to(curr_device) + # ipex-llm changes end + layer_outputs = decoder_layer( + hidden_states, + attention_mask=causal_mask, + position_ids=position_ids, + past_key_value=past_key_values, + output_attentions=output_attentions, + use_cache=use_cache, + cache_position=cache_position, + ) + + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache = layer_outputs[2 if output_attentions else 1] + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + hidden_states = self.norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = next_decoder_cache if use_cache else None + if return_legacy_cache: + next_cache = next_cache.to_legacy_cache() + if not return_dict: + return tuple(v for v in [hidden_states, next_cache, + all_hidden_states, all_self_attns] if v is not None) + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + ) + + def cohere_attention_forward( self, hidden_states: torch.Tensor,