Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add mistral npu support #11523

Merged
merged 2 commits into from
Jul 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 16 additions & 0 deletions python/llm/src/ipex_llm/transformers/npu_models/convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -86,6 +86,22 @@ def optimize_llm(model: torch.nn.Module):
convert_forward(model, LlamaAttention, llama_attention_forward)
convert_forward(model, LlamaMLP, llama_mlp_forward)

elif model.config.model_type == "mistral":
from ipex_llm.transformers.npu_models.mistral import merge_qkv
from ipex_llm.transformers.npu_models.mistral import merge_mlp
model.apply(merge_qkv)
model.apply(merge_mlp)

from ipex_llm.transformers.npu_models.mistral import mistral_model_forward
from ipex_llm.transformers.npu_models.mistral import mistral_attention_forward
from ipex_llm.transformers.npu_models.mistral import mistral_mlp_forward
from transformers.models.mistral.modeling_mistral import MistralModel
from transformers.models.mistral.modeling_mistral import MistralAttention
from transformers.models.mistral.modeling_mistral import MistralMLP
convert_forward(model, MistralModel, mistral_model_forward)
convert_forward(model, MistralAttention, mistral_attention_forward)
convert_forward(model, MistralMLP, mistral_mlp_forward)

elif model.config.model_type == "qwen2":
from ipex_llm.transformers.npu_models.qwen2 import merge_qkv
from ipex_llm.transformers.npu_models.qwen2 import merge_mlp
Expand Down
1 change: 1 addition & 0 deletions python/llm/src/ipex_llm/transformers/npu_models/llama.py
Original file line number Diff line number Diff line change
Expand Up @@ -230,6 +230,7 @@ def llama_attention_forward(
attn_mask=causal_mask,
is_causal=self.is_causal and causal_mask is None and q_len > 1,
)
attn_weights = None
else:
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
Expand Down
277 changes: 277 additions & 0 deletions python/llm/src/ipex_llm/transformers/npu_models/mistral.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,277 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/mistral/modeling_mistral.py
# which is licensed under Apache License 2.0:
#
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from typing import Optional, Tuple, List, Union

import math
import torch
from transformers.cache_utils import Cache
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.models.mistral.modeling_mistral import repeat_kv, apply_rotary_pos_emb
from transformers.models.mistral.modeling_mistral import MistralAttention, MistralMLP
from transformers.models.mistral.modeling_mistral import _prepare_4d_causal_attention_mask

from ipex_llm.utils.common.log4Error import invalidInputError
from ipex_llm.transformers.npu_models.common import merge_linear


def merge_qkv(module: torch.nn.Module):
if isinstance(module, MistralAttention):
qkv_proj = merge_linear([
module.q_proj,
module.k_proj,
module.v_proj,
])
module.qkv_proj = qkv_proj
del module.q_proj, module.k_proj, module.v_proj


def merge_mlp(module: torch.nn.Module):
if isinstance(module, MistralMLP):
gate_up_proj = merge_linear([
module.gate_proj,
module.up_proj,
])
module.gate_up_proj = gate_up_proj
del module.gate_proj, module.up_proj


def mistral_model_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = (
output_attentions if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict

if (input_ids is None) ^ (inputs_embeds is not None):
invalidInputError(False,
("You cannot specify both input_ids and inputs_embeds at the same time, "
"and must specify either one"))
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape

if self.gradient_checkpointing and self.training and use_cache:
use_cache = False

past_key_values_length = 0

# ipex-llm changes start
from ipex_llm.transformers.kv import DynamicNormalCache
if use_cache and not isinstance(past_key_values, DynamicNormalCache):
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
past_key_values_length = past_key_values.get_seq_length()
# ipex-llm changes end

if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length,
dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()

if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)

# ipex-llm changes start
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
sliding_window=self.config.sliding_window,
)
# ipex-llm changes end

hidden_states = inputs_embeds

# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None

for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)

if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
)

hidden_states = layer_outputs[0]

if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]

if output_attentions:
all_self_attns += (layer_outputs[1],)

hidden_states = self.norm(hidden_states)

# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)

# ipex-llm changes start
next_cache = next_decoder_cache if use_cache else None
# ipex-llm changes end

if not return_dict:
return tuple(v for v in [hidden_states, next_cache,
all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)


def mistral_attention_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()

qkv = self.qkv_proj(hidden_states)
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
qkv = qkv.transpose(1, 2)
query_states, key_states, value_states = qkv.split([self.num_heads,
self.num_key_value_heads,
self.num_key_value_heads], dim=1)

kv_seq_len = q_len
if past_key_value is not None:
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states,
self.layer_idx, cache_kwargs)

key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)

if query_states.size(2) == key_states.size(2):
# first token
from intel_npu_acceleration_library.functional import scaled_dot_product_attention
attn_output = scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=attention_mask,
is_causal=attention_mask is None and bsz == 1 and q_len > 1,
)
attn_weights = None
else:
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask

attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(value_states.dtype)
attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
training=self.training)
attn_output = torch.matmul(attn_weights, value_states)

attn_output = attn_output.transpose(1, 2).contiguous()

attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)

attn_output = self.o_proj(attn_output)

if not output_attentions:
attn_weights = None

return attn_output, attn_weights, past_key_value


def mistral_mlp_forward(self, x):
gate_up_proj = self.gate_up_proj(x)
gate_proj, up_proj = gate_up_proj.chunk(2, dim=-1)
down_proj = self.down_proj(self.act_fn(gate_proj) * up_proj)
return down_proj
Loading