diff --git a/python/llm/example/NPU/HF-Transformers-AutoModels/LLM/Pipeline-Models/qwen2.py b/python/llm/example/NPU/HF-Transformers-AutoModels/LLM/Pipeline-Models/qwen2.py index 6ca973c69e75..9c47f2715241 100644 --- a/python/llm/example/NPU/HF-Transformers-AutoModels/LLM/Pipeline-Models/qwen2.py +++ b/python/llm/example/NPU/HF-Transformers-AutoModels/LLM/Pipeline-Models/qwen2.py @@ -24,19 +24,6 @@ logger = logging.get_logger(__name__) -def get_prompt(message: str, chat_history: list[tuple[str, str]], - system_prompt: str) -> str: - texts = [f'[INST] <>\n{system_prompt}\n<>\n\n'] - # The first user input is _not_ stripped - do_strip = False - for user_input, response in chat_history: - user_input = user_input.strip() if do_strip else user_input - do_strip = True - texts.append(f'{user_input} [/INST] {response.strip()} [INST] ') - message = message.strip() if do_strip else message - texts.append(f'{message} [/INST]') - return ''.join(texts) - if __name__ == "__main__": parser = argparse.ArgumentParser( description="Predict Tokens using `generate()` API for npu model" @@ -48,7 +35,7 @@ def get_prompt(message: str, chat_history: list[tuple[str, str]], help="The huggingface repo id for the Baichuan2 model to be downloaded" ", or the path to the huggingface checkpoint folder", ) - parser.add_argument('--prompt', type=str, default="What is AI?", + parser.add_argument('--prompt', type=str, default="AI是什么?", help='Prompt to infer') parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict") parser.add_argument("--max-context-len", type=int, default=1024)