diff --git a/python/llm/src/ipex_llm/transformers/npu_model.py b/python/llm/src/ipex_llm/transformers/npu_model.py index 771dff62a5b..00df48a7ff5 100644 --- a/python/llm/src/ipex_llm/transformers/npu_model.py +++ b/python/llm/src/ipex_llm/transformers/npu_model.py @@ -27,6 +27,7 @@ from ipex_llm.utils.common.log4Error import invalidInputError from ipex_llm.transformers.utils import logger +from ipex_llm.transformers.npu_models.convert import optimize_llm def patch_flash_attn_import(filename: str) -> List[str]: @@ -112,7 +113,23 @@ def from_pretrained(cls, model = cls.HF_Model.from_pretrained(*args, **kwargs) logger.info(f"Converting model, it may takes up to several minutes ...") - model = npu_lib.compile(model, qtype, False) + try: + # for intel_npu_acceleration_library >= 1.1.0 + from intel_npu_acceleration_library.quantization import quantize_model + from intel_npu_acceleration_library.compiler import ( + apply_horizontal_fusion, create_npu_kernels + ) + with torch.no_grad(): + optimize_llm(model) + apply_horizontal_fusion(model) + if not qtype.is_floating_point: + model = quantize_model(model, qtype) + create_npu_kernels(model) + model = model.eval() + except ImportError as _e: + # for intel_npu_acceleration_library < 1.1.0 + model = npu_lib.compile(model, qtype, False) + logger.info(f"Finish to convert model") # add save_low_bit to pretrained model dynamically model.save_low_bit = types.MethodType(cls.save_low_bit, model) diff --git a/python/llm/src/ipex_llm/transformers/npu_models/__init__.py b/python/llm/src/ipex_llm/transformers/npu_models/__init__.py new file mode 100644 index 00000000000..265f7fc29bb --- /dev/null +++ b/python/llm/src/ipex_llm/transformers/npu_models/__init__.py @@ -0,0 +1,15 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + diff --git a/python/llm/src/ipex_llm/transformers/npu_models/convert.py b/python/llm/src/ipex_llm/transformers/npu_models/convert.py new file mode 100644 index 00000000000..20482057ffa --- /dev/null +++ b/python/llm/src/ipex_llm/transformers/npu_models/convert.py @@ -0,0 +1,34 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import torch + + +def convert_forward(m, target_m, new_forward): + if m.__class__ == target_m: + bound_method = new_forward.__get__(m, m.__class__) + setattr(m, "forward", bound_method) + for _, sub_m in m.named_children(): + convert_forward(sub_m, target_m, new_forward) + + +def optimize_llm(model: torch.nn.Module): + if model.config.model_type == "llama": + from ipex_llm.transformers.npu_models.llama import merge_qkv + model.apply(merge_qkv) + from ipex_llm.transformers.npu_models.llama import llama_attention_forward + from transformers.models.llama.modeling_llama import LlamaAttention + convert_forward(model, LlamaAttention, llama_attention_forward) diff --git a/python/llm/src/ipex_llm/transformers/npu_models/llama.py b/python/llm/src/ipex_llm/transformers/npu_models/llama.py new file mode 100644 index 00000000000..65d5f324883 --- /dev/null +++ b/python/llm/src/ipex_llm/transformers/npu_models/llama.py @@ -0,0 +1,123 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# Some parts of this file is adapted from +# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llama/modeling_llama.py +# which is licensed under Apache License 2.0: +# +# Copyright 2021 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from typing import Optional, Tuple +from transformers.cache_utils import Cache + +import torch +from transformers.models.llama.modeling_llama import LlamaAttention, repeat_kv, apply_rotary_pos_emb + + +def merge_qkv(module: torch.nn.Module): + if isinstance(module, LlamaAttention): + new_weight = torch.cat([ + module.q_proj.weight.data, + module.k_proj.weight.data, + module.v_proj.weight.data, + ], dim=0) + + if module.q_proj.bias is not None: + qkv_proj = torch.nn.Linear(0, 0, bias=True) + new_bias = torch.cat([ + module.q_proj.bias.data, + module.k_proj.bias.data, + module.v_proj.bias.data, + ], dim=0) + qkv_proj.bias = torch.nn.Parameter(new_bias, requires_grad=False) + else: + qkv_proj = torch.nn.Linear(0, 0, bias=False) + qkv_proj.weight = torch.nn.Parameter(new_weight, requires_grad=False) + qkv_proj.in_features = new_weight.size(1) + qkv_proj.out_features = new_weight.size(0) + module.qkv_proj = qkv_proj + + del module.q_proj, module.k_proj, module.v_proj + + +def llama_attention_forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + cache_position: Optional[torch.LongTensor] = None, + **kwargs, +) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + bsz, q_len, _ = hidden_states.size() + + qkv = self.qkv_proj(hidden_states) + qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim) + qkv = qkv.transpose(1, 2) + query_states, key_states, value_states = qkv.split([self.num_heads, + self.num_key_value_heads, + self.num_key_value_heads], dim=1) + + past_key_value = getattr(self, "past_key_value", past_key_value) + cos, sin = self.rotary_emb(value_states, position_ids) + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) + + if past_key_value is not None: + # sin and cos are specific to RoPE models; cache_position needed for the static cache + cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} + key_states, value_states = past_key_value.update(key_states, value_states, + self.layer_idx, cache_kwargs) + + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + if attention_mask is not None: + causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] + else: + causal_mask = None + + attn_output = torch.nn.functional.scaled_dot_product_attention( + query_states, + key_states, + value_states, + attn_mask=causal_mask, + is_causal=self.is_causal and attention_mask is None and q_len > 1, + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) + + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value