diff --git a/python/llm/src/ipex_llm/transformers/npu_models/chatglm.py b/python/llm/src/ipex_llm/transformers/npu_models/chatglm.py new file mode 100644 index 00000000000..69579053a6e --- /dev/null +++ b/python/llm/src/ipex_llm/transformers/npu_models/chatglm.py @@ -0,0 +1,265 @@ +# +# Copyright 2016 The BigDL Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# This file is adapted from +# https://huggingface.co/THUDM/chatglm2-6b/blob/8eb45c842594b8473f291d0f94e7bbe86ffc67d8/modeling_chatglm.py +# + +import math +import torch +from typing import Optional, Tuple +from transformers.modeling_outputs import BaseModelOutputWithPast +from ipex_llm.transformers.models.utils import update_past_key_value + + +def chatglm2_model_forward( + self, + input_ids, + position_ids: Optional[torch.Tensor]=None, + attention_mask: Optional[torch.BoolTensor]=None, + full_attention_mask: Optional[torch.BoolTensor]=None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]=None, + inputs_embeds: Optional[torch.Tensor]=None, + use_cache: Optional[bool]=None, + output_hidden_states: Optional[bool]=None, + return_dict: Optional[bool]=None, +): + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None + else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if inputs_embeds is None: + batch_size, seq_length = input_ids.shape + inputs_embeds = self.embedding(input_ids) + else: + inputs_embeds = inputs_embeds.transpose(0, 1).contiguous() + seq_length, batch_size, _ = inputs_embeds.shape + input_ids = torch.empty((batch_size, seq_length), + dtype=inputs_embeds.dtype, device=inputs_embeds.device) + + if full_attention_mask is None: + if (attention_mask is not None and not attention_mask.all()) or ( + past_key_values and seq_length != 1): + full_attention_mask = self.get_masks(input_ids, + past_key_values, + padding_mask=attention_mask) + + rotary_pos_emb = self.rotary_pos_emb(self.seq_length) + if position_ids is not None: + rotary_pos_emb = rotary_pos_emb[position_ids] + else: + rotary_pos_emb = rotary_pos_emb[None, :seq_length] + rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous() + + # ipex-llm changes begin: + # generate `causal_mask` and replace `full_attention_mask` with it + # + # `full_attention_mask` is not None only when + # `past_key_values` is not None and `seq_length` > 1 + if full_attention_mask is not None: + causal_mask = torch.zeros([batch_size, 1, seq_length, full_attention_mask.size(-1)], + dtype=inputs_embeds.dtype, device=inputs_embeds.device) + mask_value = torch.finfo(inputs_embeds.dtype).min + causal_mask.masked_fill_(full_attention_mask, mask_value) + elif self.training or (inputs_embeds.device.type != "xpu" and past_key_values is None): + full_attention_mask = self.get_masks(input_ids, + past_key_values, + padding_mask=attention_mask) + causal_mask = torch.zeros([batch_size, 1, seq_length, full_attention_mask.size(-1)], + dtype=inputs_embeds.dtype, device=inputs_embeds.device) + mask_value = torch.finfo(inputs_embeds.dtype).min + causal_mask.masked_fill_(full_attention_mask, mask_value) + else: + causal_mask = None + + # Run encoder. + hidden_states, presents, all_hidden_states, all_self_attentions = chatglm2_encoder_forward( + self.encoder, + inputs_embeds, causal_mask, + rotary_pos_emb=rotary_pos_emb, kv_caches=past_key_values, + use_cache=use_cache, output_hidden_states=output_hidden_states + ) + # ipex-llm changes end + + if not return_dict: + return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] + if v is not None) + + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=presents, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +# remove code which stores first token's kv cache by tensor format +# to fix chatglm2-32k and chatglm3-128k +def chatglm2_encoder_forward( + self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None, + use_cache: Optional[bool] = True, + output_hidden_states: Optional[bool] = False, +): + if not kv_caches: + kv_caches = [None for _ in range(self.num_layers)] + presents = () if use_cache else None + if self.gradient_checkpointing and self.training: + use_cache = False + + all_self_attentions = None + all_hidden_states = () if output_hidden_states else None + for index in range(self.num_layers): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer = self._get_layer(index) + if self.gradient_checkpointing and self.training: + layer_ret = torch.utils.checkpoint.checkpoint( + layer, + hidden_states, + attention_mask, + rotary_pos_emb, + kv_caches[index], + use_cache + ) + else: + layer_ret = layer( + hidden_states, + attention_mask, + rotary_pos_emb, + kv_cache=kv_caches[index], + use_cache=use_cache + ) + hidden_states, kv_cache = layer_ret + if use_cache: + presents = presents + (kv_cache,) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + # Final layer norm. + if self.post_layer_norm: + hidden_states = self.final_layernorm(hidden_states) + + return hidden_states, presents, all_hidden_states, all_self_attentions + + +def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: + """ + This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states + go from (batch, num_key_value_heads, seqlen, head_dim) to + (batch, num_attention_heads, seqlen, head_dim) + """ + batch, num_key_value_heads, slen, head_dim = hidden_states.shape + if n_rep == 1: + return hidden_states + hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, + n_rep, slen, head_dim) + return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) + + +@torch.jit.script +def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor: + # x: [sq, b, np, hn] + sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3) + rot_dim = rope_cache.shape[-2] * 2 + x, x_pass = x[..., :rot_dim], x[..., rot_dim:] + # truncate to support variable sizes + rope_cache = rope_cache[:sq] + xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2) + rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2) + x_out2 = torch.stack( + [ + xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1], + xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1], + ], + -1, + ) + x_out2 = x_out2.flatten(3) + return torch.cat((x_out2, x_pass), dim=-1) + + +def chatglm2_attention_forward( + self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True +): + # hidden_states: [seq_len, bsz, head_dim] + q_len, bsz, _ = hidden_states.size() + + # kv_cache: [seq_len, bsz, n_kv_head, head_dim] -> + # past_key_value: [bsz, n_kv_head, seq_len, head_dim] + past_key_value = None if kv_cache is None else (kv_cache[0].permute(1, 2, 0, 3), + kv_cache[1].permute(1, 2, 0, 3)) + + n_head = self.num_attention_heads_per_partition + n_kv_head = self.num_multi_query_groups_per_partition if self.multi_query_attention else n_head + head_dim = self.hidden_size_per_attention_head + + qkv = self.query_key_value(hidden_states) + qkv = qkv.view(q_len, bsz, n_head + 2 * n_kv_head, head_dim) + # [seq_len, bsz, n_head, head_dim] -> [bsz, n_head, seq_len, head_dim] + qkv = qkv.permute(1, 2, 0, 3) + + query_states, key_states, value_states = qkv.split([n_head, + n_kv_head, + n_kv_head], dim=1) + + kv_seq_len = key_states.shape[2] + if past_key_value is not None: + kv_seq_len += past_key_value[0].shape[2] + + if rotary_pos_emb is not None: + query_states = apply_rotary_pos_emb(query_states, rotary_pos_emb) + key_states = apply_rotary_pos_emb(key_states, rotary_pos_emb) + + key_states, value_states = update_past_key_value( + past_key_value, key_states, value_states, + kv_seq_len, False, hidden_states.device + ) + # past_key_value: [bsz, n_kv_head, seq_len, head_dim] -> [seq_len, bsz, n_kv_head, head_dim] + past_key_value = (key_states.permute(2, 0, 1, 3), + value_states.permute(2, 0, 1, 3)) if use_cache else None + + # repeat k/v heads if n_kv_heads < n_heads + key_states = repeat_kv(key_states, n_head // n_kv_head) + value_states = repeat_kv(value_states, n_head // n_kv_head) + + if query_states.size(2) == key_states.size(2): + # first token + from intel_npu_acceleration_library.functional import scaled_dot_product_attention + attn_output = scaled_dot_product_attention( + query_states, + key_states, + value_states, + attn_mask=attention_mask, + is_causal=q_len > 1 and bsz == 1, + ) + attn_weights = None + else: + attn_weights = torch.matmul(query_states, + key_states.transpose(2, 3)) / math.sqrt(head_dim) + if attention_mask is not None: + attn_weights = attn_weights + attention_mask + attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, + dtype=torch.float32).to(value_states.dtype) + attn_output = torch.matmul(attn_weights, value_states) + + # context_layer's shape: [bsz, n_head, seq_len, head_dim] -> [seq_len, bsz, n_head * head_dim] + attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(q_len, bsz, n_head * head_dim) + output = self.dense(attn_output) + + return output, past_key_value diff --git a/python/llm/src/ipex_llm/transformers/npu_models/convert.py b/python/llm/src/ipex_llm/transformers/npu_models/convert.py index 4983224f343..3818d1c8ee8 100644 --- a/python/llm/src/ipex_llm/transformers/npu_models/convert.py +++ b/python/llm/src/ipex_llm/transformers/npu_models/convert.py @@ -15,6 +15,7 @@ import torch +import importlib from ipex_llm.transformers.npu_models.linear import QuantizedLinear @@ -118,6 +119,15 @@ def optimize_llm(model: torch.nn.Module): convert_forward(model, module.MiniCPMForCausalLM, minicpm_model_causal_lm_forward) convert_forward(model, module.MiniCPMAttention, minicpm_attention_forward) convert_forward(model, module.MiniCPMMLP, minicpm_mlp_forward) + + elif model.config.model_type == "chatglm": + from ipex_llm.transformers.npu_models.chatglm import chatglm2_model_forward + from ipex_llm.transformers.npu_models.chatglm import chatglm2_attention_forward + modeling_module_name = model.__class__.__module__ + module = importlib.import_module(modeling_module_name) + convert_forward(model, module.ChatGLMModel, chatglm2_model_forward) + convert_forward(model, module.SelfAttention, chatglm2_attention_forward) + elif model.config.model_type == "stablelm": from ipex_llm.transformers.npu_models.stablelm import merge_qkv from ipex_llm.transformers.npu_models.stablelm import merge_mlp