-
Notifications
You must be signed in to change notification settings - Fork 2
/
main_mmdet.py
425 lines (374 loc) · 19.5 KB
/
main_mmdet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
import time
import warnings
import mmcv
import torch
from mmcv import Config, DictAction
from mmcv.cnn import fuse_conv_bn
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import (get_dist_info, init_dist, load_checkpoint,
wrap_fp16_model)
#from apis_test import multi_gpu_test, single_gpu_test
from mmdet.datasets import (build_dataloader, build_dataset,
replace_ImageToTensor)
from mmdet.models import build_detector
import numpy as np
from tqdm import tqdm
################################################################################
# load objseeker library
from objseeker.defense import FRCNN_wrapper,ObjSeekerModel
from clean_eval import clean_eval
import joblib
#set confidence threshold for saving raw detection results
SAVE_RAW_BASE_CONF_THRES = 0.05
SAVE_RAW_MASK_CONF_THRES = 0.1
################################################################################
def parse_args():
parser = argparse.ArgumentParser(
description='MMDet test (and eval) a model')
# mmdet arguments
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument(
'--work-dir',
help='the directory to save the file containing evaluation metrics')
parser.add_argument('--out', help='output result file in pickle format')
parser.add_argument(
'--fuse-conv-bn',
action='store_true',
help='Whether to fuse conv and bn, this will slightly increase'
'the inference speed')
parser.add_argument(
'--format-only',
action='store_true',
help='Format the output results without perform evaluation. It is'
'useful when you want to format the result to a specific format and '
'submit it to the test server')
parser.add_argument(
'--eval',
type=str,
nargs='+',
help='evaluation metrics, which depends on the dataset, e.g., "bbox",'
' "segm", "proposal" for COCO, and "mAP", "recall" for PASCAL VOC')
parser.add_argument('--show', action='store_true', help='show results')
parser.add_argument(
'--show-dir', help='directory where painted images will be saved')
parser.add_argument(
'--show-score-thr',
type=float,
default=0.3,
help='score threshold (default: 0.3)')
parser.add_argument(
'--gpu-collect',
action='store_true',
help='whether to use gpu to collect results.')
parser.add_argument(
'--tmpdir',
help='tmp directory used for collecting results from multiple '
'workers, available when gpu-collect is not specified')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--options',
nargs='+',
action=DictAction,
help='custom options for evaluation, the key-value pair in xxx=yyy '
'format will be kwargs for dataset.evaluate() function (deprecate), '
'change to --eval-options instead.')
parser.add_argument(
'--eval-options',
nargs='+',
action=DictAction,
help='custom options for evaluation, the key-value pair in xxx=yyy '
'format will be kwargs for dataset.evaluate() function')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
################################################################################
# objectseeker argumenets
parser.add_argument('--conf-thres', type=float, default=0.05, help='object confidence threshold')#for vanilla object detectors
# defense parameters
parser.add_argument('--base-conf-thres', type=float, default=0.6, help='conf thres of base detector')
parser.add_argument('--base-nms-iou-thres', type=float, default=0.65, help='IoU threshold for NMS in base object detector')
parser.add_argument('--num-line', type=int, default=30, help='number of lines $k$')
parser.add_argument('--masked-conf-thres', type=float, default=0.8, help='conf thres for masked predictions ($tau_mask$)')
parser.add_argument('--pruning-mode', type=str, default='ioa', help='ioa or iou')
parser.add_argument('--ioa-prune-thres', type=float, default=0.6, help='ioa threshold for box filtering/pruning ($tau_ioa$)')
parser.add_argument('--iou-prune-thres', type=float, default=0.8, help='iou threshold for box filtering/pruning ($tau_iou$; not used in the main body; see appendix)')
parser.add_argument('--match-class', action='store_true', help='whether consider class label in the pruning (will affect robustness property)')
parser.add_argument('--alpha', type=float, default=0.8, help='minimum masked confidence threshold (used for clean AP calculation; see appendix)')
parser.add_argument('--beta', type=float, default=0.5, help='(used for clean AP calculation; see appendix)')
# certification arguments
parser.add_argument('--certify-iou-thres', type=float, default=0.0, help='iou thres for robustness certification')
parser.add_argument('--certify-ioa-thres', type=float, default=0.5, help='ioa thres for robustness certification')
parser.add_argument('--patch-size', type=float, default=0.01, help='patch size, in percentage of image pixels')
# functional arguments
parser.add_argument('--dump-dir', type=str, default='dump', help='root dir for precomputed raw detections')
parser.add_argument('--clean-dir', type=str, default='clean_det', help='dir for saving clean detection results')
parser.add_argument('--save-det', action='store_true', help='whether to save detection results')
parser.add_argument('--save-raw', action='store_true', help='whether to save raw detection results')
parser.add_argument('--load-raw', action='store_true', help='whether to load precomputed raw detection')
parser.add_argument('--one-line', action='store_true', help='whether use one-line inference mode without any precomputing')
parser.add_argument('--certify', action='store_true', help='whether to certification')
parser.add_argument('--map', action='store_true', help='whether to calculate ap (need to change the confidence threshold)')
################################################################################
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
if args.options and args.eval_options:
raise ValueError(
'--options and --eval-options cannot be both '
'specified, --options is deprecated in favor of --eval-options')
if args.options:
warnings.warn('--options is deprecated in favor of --eval-options')
args.eval_options = args.options
return args
def main():
args = parse_args()
assert args.out or args.eval or args.format_only or args.show \
or args.show_dir, \
('Please specify at least one operation (save/eval/format/show the '
'results / save the results) with the argument "--out", "--eval"'
', "--format-only", "--show" or "--show-dir"')
if args.eval and args.format_only:
raise ValueError('--eval and --format_only cannot be both specified')
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
raise ValueError('The output file must be a pkl file.')
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
cfg.model.pretrained = None
if cfg.model.get('neck'):
if isinstance(cfg.model.neck, list):
for neck_cfg in cfg.model.neck:
if neck_cfg.get('rfp_backbone'):
if neck_cfg.rfp_backbone.get('pretrained'):
neck_cfg.rfp_backbone.pretrained = None
elif cfg.model.neck.get('rfp_backbone'):
if cfg.model.neck.rfp_backbone.get('pretrained'):
cfg.model.neck.rfp_backbone.pretrained = None
# in case the test dataset is concatenated
samples_per_gpu = 1
if isinstance(cfg.data.test, dict):
cfg.data.test.test_mode = True
samples_per_gpu = cfg.data.test.pop('samples_per_gpu', 1)
if samples_per_gpu > 1:
# Replace 'ImageToTensor' to 'DefaultFormatBundle'
cfg.data.test.pipeline = replace_ImageToTensor(
cfg.data.test.pipeline)
elif isinstance(cfg.data.test, list):
for ds_cfg in cfg.data.test:
ds_cfg.test_mode = True
samples_per_gpu = max(
[ds_cfg.pop('samples_per_gpu', 1) for ds_cfg in cfg.data.test])
if samples_per_gpu > 1:
for ds_cfg in cfg.data.test:
ds_cfg.pipeline = replace_ImageToTensor(ds_cfg.pipeline)
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
rank, _ = get_dist_info()
# allows not to create
if args.work_dir is not None and rank == 0:
mmcv.mkdir_or_exist(osp.abspath(args.work_dir))
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
json_file = osp.join(args.work_dir, f'eval_{timestamp}.json')
# build the dataloader
dataset = build_dataset(cfg.data.test)
data_loader = build_dataloader(
dataset,
samples_per_gpu=samples_per_gpu,
workers_per_gpu=cfg.data.workers_per_gpu,
dist=distributed,
shuffle=False)
# build the model and load checkpoint
cfg.model.train_cfg = None
model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg'))
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
wrap_fp16_model(model)
checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu',strict=False)
#print(cfg.model)
if args.fuse_conv_bn:
model = fuse_conv_bn(model)
# old versions did not save class info in checkpoints, this walkaround is
# for backward compatibility
if 'CLASSES' in checkpoint.get('meta', {}):
model.CLASSES = checkpoint['meta']['CLASSES']
else:
model.CLASSES = dataset.CLASSES
################################################################################
# basic setup
if 'coco' in args.config:
dataset_name = 'coco'
num_cls = 80
conf_rescale_a = 1.36 #determined by heurstics; used to rescale the confidence value
conf_rescale_b = 4.7
elif 'voc' in args.config:
dataset_name = 'voc'
num_cls = 20
conf_rescale_a = 1.53
conf_rescale_b = 24.8
#elif 'kitti' in args.config:
# dataset_name = 'kitti'
# num_cls = 3
# conf_rescale_a = 1.53
# conf_rescale_b = 24.8
# setup directory, load/save detection results
if args.save_raw or args.load_raw:
DUMP_DIR = args.dump_dir
if not os.path.exists(DUMP_DIR):
os.mkdir(DUMP_DIR)
model_name = 'swin_{}'.format(dataset_name)#hard-coded
batch_size = 1 # the code for frcnn is assumed we are using batch size of one
prefix = 'raw_masked_output_{}_{}_{}_{}_{}'.format(dataset_name,model_name,SAVE_RAW_MASK_CONF_THRES,args.base_nms_iou_thres,batch_size)
DUMP_DIR_MASK = os.path.join(DUMP_DIR,prefix)
if not os.path.exists(DUMP_DIR_MASK):
os.mkdir(DUMP_DIR_MASK)
prefix = 'base_output_{}_{}_{}_{}_{}'.format(dataset_name,model_name,SAVE_RAW_BASE_CONF_THRES,args.base_nms_iou_thres,batch_size)
DUMP_DIR_BASE = os.path.join(DUMP_DIR,prefix)
if not os.path.exists(DUMP_DIR_BASE):
os.mkdir(DUMP_DIR_BASE)
if args.load_raw: # load saved detection results
base_output_list = joblib.load(os.path.join(DUMP_DIR_BASE,'base_output_list.z'))
if args.num_line>0:
raw_masked_output_list = joblib.load(os.path.join(DUMP_DIR_MASK,'raw_masked_output_list_{}.z'.format(args.num_line)))
else:
raw_masked_output_list = [None for i in range(len(base_output_list))]
else: # prepare to gather raw detection results and save
base_output_list = [] # detection results for vanilla object detectors on the original images
raw_masked_output_list = [] # detection results on masked images
# set the flags to the saving mode
args.base_conf_thres = SAVE_RAW_BASE_CONF_THRES
args.conf_thres = SAVE_RAW_BASE_CONF_THRES
args.masked_conf_thres = SAVE_RAW_MASK_CONF_THRES
args.device = 'cuda'
# build model
model_ = MMDataParallel(model, device_ids=[0]) # add a mmdet wrapper...
model_ = FRCNN_wrapper(model_,conf_rescale_a,conf_rescale_b)
if args.load_raw:
model_ = None
if args.certify:
cr_res = [0,0,0,0,0]#far_vul_cnt_iou_total,far_vul_cnt_total,close_vul_cnt_total,over_vul_cnt_total,obj_cnt_total
if args.map:
conf_thres_list = np.linspace(0,0.99,100)[::-1]
else:
conf_thres_list = [args.base_conf_thres]
args.save_det = args.save_det or args.map
if args.save_det:
CLEAN_DIR = args.clean_dir
CLEAN_BASE_DIR = CLEAN_DIR
if not os.path.exists(CLEAN_DIR):
os.mkdir(CLEAN_DIR)
CLEAN_DIR = os.path.join(CLEAN_DIR,dataset_name)
if not os.path.exists(CLEAN_DIR):
os.mkdir(CLEAN_DIR)
match_class = 'cls' if args.match_class else 'nocls'
CLEAN_DIR = os.path.join(CLEAN_DIR,'{}_{}_{}_{}_{}_{}'.format(model_name,args.num_line,args.ioa_prune_thres,args.iou_prune_thres,match_class,args.pruning_mode))
if not os.path.exists(CLEAN_DIR):
os.mkdir(CLEAN_DIR)
for conf in tqdm(conf_thres_list):
save_flg = False
args.base_conf_thres = conf
if args.map:
args.masked_conf_thres = max(args.alpha,conf + (1-conf)*args.beta)
if args.save_det:
args.clean_dir = os.path.join(CLEAN_DIR,'{:.3f}_{:.5f}'.format(conf,args.masked_conf_thres))
if not os.path.exists(args.clean_dir):
os.mkdir(args.clean_dir)
model = ObjSeekerModel(model_,args)
outputs = []
dataset = data_loader.dataset
if not args.map:
data_loader = tqdm(data_loader)
for batch_i, data in enumerate(data_loader):
with torch.no_grad():
img_metas = data['img_metas'][0].data[0]
fn = img_metas[0]['filename']
fn = fn.split('/')[-1]
img_id = fn.split('.')[0]
if args.one_line: # do not run the inference with precomputed detections
output = model(data)
else:
if args.load_raw: # if we already loaded the precomputed detection
raw_masked_output = raw_masked_output_list[batch_i]
base_output = base_output_list[batch_i]
else: # otherwise we generate the precomputed detection now
raw_masked_output = model.get_raw_masked_boxes(data)
base_output = model.base_model(data,conf_thres=args.conf_thres)
if args.save_raw: # save the detection is needed
raw_masked_output_list.append(raw_masked_output)
base_output_list.append([x.detach().cpu() for x in base_output])
# run the inference with precomputed detections
output = model(data,raw_masked_output_precomputed=raw_masked_output,base_output_precomputed=base_output)
save_flg = len(output)>0 or save_flg
output = FRCNN_wrapper.convert(output,num_cls=num_cls,img_metas=data['img_metas'],rescale=True)
outputs.extend(output)
if ('voc' in dataset_name or 'kitti' in dataset_name) and args.save_det:
with open(os.path.join(args.clean_dir,'{}.txt'.format(img_id)),'w') as wf:
for cls_i,boxes in enumerate(output[0]):
for box_i,box in enumerate(boxes):
wf.write('{} {} {} {} {} {}\n'.format(cls_i,box[4],box[0],box[1],box[2],box[3]))
if args.certify: # gather certification stats
#get and re-format the ground-truth labels.
ann = dataset.get_ann_info(batch_i)
bboxes = torch.from_numpy(ann['bboxes']).to(args.device)
labels = torch.from_numpy(ann['labels']).to(args.device)
scale_factor = torch.from_numpy(data['img_metas'][0]._data[0][0]['scale_factor']).to(args.device)
ground_truth = [torch.cat([bboxes*scale_factor,labels[:,None]],dim=1)]#xyxy cls
res = model.certify(data,raw_masked_output,ground_truth,args.patch_size,args.certify_iou_thres,args.certify_ioa_thres)
cr_res = [cr_res[x]+res[x] for x in range(5)]
rank, _ = get_dist_info()
if rank == 0:
if save_flg and args.save_det and 'coco' in dataset_name:
dataset.results2json(outputs, os.path.join(args.clean_dir,'coco_predictions'))
if args.save_raw: # dump detections
joblib.dump(raw_masked_output_list,os.path.join(DUMP_DIR_MASK,'raw_masked_output_list_{}.z'.format(args.num_line)))
joblib.dump(base_output_list,os.path.join(DUMP_DIR_BASE,'base_output_list.z'))
if args.certify: # print robustness stats
obj_cnt_total = cr_res[-1]
cr_res = cr_res[:4]
cr_res = [100-x/obj_cnt_total*100 for x in cr_res]
print('Certified recall results:')
print('Far-patch (IoU): {:.2f}%; Far-patch (IoA): {:.2f}%; Close-patch (IoA): {:.2f}%; Over-patch (IoA): {:.2f}%'.format(*cr_res))
res_dir = 'results_{}'.format(args.pruning_mode)
match_class = 'cls' if args.match_class else 'nocls'
if not os.path.exists(res_dir):
os.mkdir(res_dir)
if args.pruning_mode == 'ioa':
joblib.dump(cr_res,'results_{}/cr_{}_{}_{}_{}_{}_{}_{}_{}.z'.format(args.pruning_mode,dataset_name,model_name,args.num_line,args.masked_conf_thres,args.ioa_prune_thres,args.certify_ioa_thres,args.patch_size,match_class))
elif args.pruning_mode == 'iou':
joblib.dump(cr_res,'results_{}/cr_{}_{}_{}_{}_{}_{}_{}_{}_{}_{}.z'.format(args.pruning_mode,dataset_name,model_name,args.num_line,args.masked_conf_thres,args.ioa_prune_thres,args.certify_ioa_thres,args.patch_size,match_class,args.iou_prune_thres,args.certify_iou_thres))
if args.save_det:
print('calling clean_eval.py...')
args.save=True
args.preprocess=True
args.load=False
args.single = not args.map
args.dataset = dataset_name
args.model = model_name
args.clean_dir = CLEAN_BASE_DIR
clean_eval(args)
################################################################################
if __name__ == '__main__':
main()