diff --git a/notebooks/samples/108 - Model Deployment with Spark Serving.ipynb b/notebooks/samples/108 - Model Deployment with Spark Serving.ipynb
index 4890bc45b4..53a012f728 100644
--- a/notebooks/samples/108 - Model Deployment with Spark Serving.ipynb
+++ b/notebooks/samples/108 - Model Deployment with Spark Serving.ipynb
@@ -11,7 +11,7 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": null,
"metadata": {
"collapsed": true
},
@@ -32,130 +32,9 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " education | \n",
- " marital-status | \n",
- " hours-per-week | \n",
- " income | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 10th | \n",
- " Divorced | \n",
- " 10.0 | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 10th | \n",
- " Divorced | \n",
- " 25.0 | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 10th | \n",
- " Divorced | \n",
- " 28.0 | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 10th | \n",
- " Divorced | \n",
- " 30.0 | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 10th | \n",
- " Divorced | \n",
- " 32.0 | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- " 5 | \n",
- " 10th | \n",
- " Divorced | \n",
- " 35.0 | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- " 6 | \n",
- " 10th | \n",
- " Divorced | \n",
- " 37.0 | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- " 7 | \n",
- " 10th | \n",
- " Divorced | \n",
- " 38.0 | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- " 8 | \n",
- " 10th | \n",
- " Divorced | \n",
- " 38.0 | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- " 9 | \n",
- " 10th | \n",
- " Divorced | \n",
- " 40.0 | \n",
- " <=50K | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " education marital-status hours-per-week income\n",
- "0 10th Divorced 10.0 <=50K\n",
- "1 10th Divorced 25.0 <=50K\n",
- "2 10th Divorced 28.0 <=50K\n",
- "3 10th Divorced 30.0 <=50K\n",
- "4 10th Divorced 32.0 <=50K\n",
- "5 10th Divorced 35.0 <=50K\n",
- "6 10th Divorced 37.0 <=50K\n",
- "7 10th Divorced 38.0 <=50K\n",
- "8 10th Divorced 38.0 <=50K\n",
- "9 10th Divorced 40.0 <=50K"
- ]
- },
- "execution_count": 2,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"dataFilePath = \"AdultCensusIncome.csv\"\n",
"import os, urllib\n",
@@ -181,7 +60,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": null,
"metadata": {
"collapsed": true
},
@@ -201,25 +80,9 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "root\n",
- " |-- education: string (nullable = true)\n",
- " |-- marital-status: string (nullable = true)\n",
- " |-- hours-per-week: double (nullable = true)\n",
- " |-- income: string (nullable = true)\n",
- " |-- scores: vector (nullable = true)\n",
- " |-- scored_probabilities: vector (nullable = true)\n",
- " |-- scored_labels: double (nullable = false)\n",
- "\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"from mmlspark import ComputeModelStatistics, TrainedClassifierModel\n",
"prediction = model.transform(test)\n",
@@ -228,65 +91,9 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " evaluation_type | \n",
- " confusion_matrix | \n",
- " accuracy | \n",
- " precision | \n",
- " recall | \n",
- " AUC | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " Classification | \n",
- " DenseMatrix([[ 5797., 408.],\\n [... | \n",
- " 0.822389 | \n",
- " 0.688787 | \n",
- " 0.464985 | \n",
- " 0.87002 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " evaluation_type confusion_matrix \\\n",
- "0 Classification DenseMatrix([[ 5797., 408.],\\n [... \n",
- "\n",
- " accuracy precision recall AUC \n",
- "0 0.822389 0.688787 0.464985 0.87002 "
- ]
- },
- "execution_count": 5,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"metrics = ComputeModelStatistics().transform(prediction)\n",
"metrics.limit(10).toPandas()"
@@ -302,7 +109,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": null,
"metadata": {
"collapsed": true
},
@@ -339,17 +146,9 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Response 0.0\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"import requests\n",
"data = u'{\" education\":\" 10th\",\" marital-status\":\" Divorced\",\" hours-per-week\":40.0}'\n",
@@ -359,17 +158,9 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Response 1.0\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"import requests\n",
"data = u'{\" education\":\" Masters\",\" marital-status\":\" Married-civ-spouse\",\" hours-per-week\":40.0}'\n",
@@ -379,7 +170,7 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": null,
"metadata": {
"collapsed": true
},