-
Notifications
You must be signed in to change notification settings - Fork 0
/
entropy.cpp
343 lines (317 loc) · 12.1 KB
/
entropy.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
// Entropy - A entropy (random number) generator for the Arduino
// The latest version of this library will always be stored in the following
// google code repository:
// http://code.google.com/p/avr-hardware-random-number-generation/source/browse/#git%2FEntropy
// with more information available on the libraries wiki page
// http://code.google.com/p/avr-hardware-random-number-generation/wiki/WikiAVRentropy
//
// Copyright 2014 by Walter Anderson
//
// This file is part of Entropy, an Arduino library.
// Entropy is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Entropy is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Entropy. If not, see <http://www.gnu.org/licenses/>.
#include "entropy.h"
const uint8_t WDT_MAX_8INT=0xFF;
const uint16_t WDT_MAX_16INT=0xFFFF;
const uint32_t WDT_MAX_32INT=0xFFFFFFFF;
// Since the Due TRNG is so fast we don't need a circular buffer for it
#ifndef ARDUINO_SAM_DUE
const uint8_t gWDT_buffer_SIZE=32;
const uint8_t WDT_POOL_SIZE=8;
uint8_t gWDT_buffer[gWDT_buffer_SIZE];
uint8_t gWDT_buffer_position;
uint8_t gWDT_loop_counter;
volatile uint8_t gWDT_pool_start;
volatile uint8_t gWDT_pool_end;
volatile uint8_t gWDT_pool_count;
volatile uint32_t gWDT_entropy_pool[WDT_POOL_SIZE];
#endif
// This function initializes the global variables needed to implement the circular entropy pool and
// the buffer that holds the raw Timer 1 values that are used to create the entropy pool. It then
// Initializes the Watch Dog Timer (WDT) to perform an interrupt every 2048 clock cycles, (about
// 16 ms) which is as fast as it can be set.
void EntropyClass::initialize(void)
{
#ifndef ARDUINO_SAM_DUE
gWDT_buffer_position=0;
gWDT_pool_start = 0;
gWDT_pool_end = 0;
gWDT_pool_count = 0;
#endif
#if defined(__AVR__)
cli(); // Temporarily turn off interrupts, until WDT configured
MCUSR = 0; // Use the MCU status register to reset flags for WDR, BOR, EXTR, and POWR
_WD_CONTROL_REG |= (1<<_WD_CHANGE_BIT) | (1<<WDE);
// WDTCSR |= _BV(WDCE) | _BV(WDE);// WDT control register, This sets the Watchdog Change Enable (WDCE) flag, which is needed to set the
_WD_CONTROL_REG = _BV(WDIE); // Watchdog system reset (WDE) enable and the Watchdog interrupt enable (WDIE)
sei(); // Turn interupts on
#elif defined(ARDUINO_SAM_DUE)
pmc_enable_periph_clk(ID_TRNG);
TRNG->TRNG_IDR = 0xFFFFFFFF;
TRNG->TRNG_CR = TRNG_CR_KEY(0x524e47) | TRNG_CR_ENABLE;
#elif defined(__arm__) && defined(TEENSYDUINO)
SIM_SCGC5 |= SIM_SCGC5_LPTIMER;
LPTMR0_CSR = 0b10000100;
LPTMR0_PSR = 0b00000101; // PCS=01 : 1 kHz clock
LPTMR0_CMR = 0x0006; // smaller number = faster random numbers...
LPTMR0_CSR = 0b01000101;
NVIC_ENABLE_IRQ(IRQ_LPTMR);
#endif
}
// This function returns a uniformly distributed random integer in the range
// of [0,0xFFFFFFFF] as long as some entropy exists in the pool and a 0
// otherwise. To ensure a proper random return the available() function
// should be called first to ensure that entropy exists.
//
// The pool is implemented as an 8 value circular buffer
uint32_t EntropyClass::random(void)
{
#ifdef ARDUINO_SAM_DUE
while (! (TRNG->TRNG_ISR & TRNG_ISR_DATRDY))
;
retVal = TRNG->TRNG_ODATA;
#else
uint8_t waiting;
while (gWDT_pool_count < 1)
waiting += 1;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE)
{
retVal = gWDT_entropy_pool[gWDT_pool_start];
gWDT_pool_start = (gWDT_pool_start + 1) % WDT_POOL_SIZE;
--gWDT_pool_count;
}
#endif
return(retVal);
}
// This function returns one byte of a single 32-bit entropy value, while preserving the remaining bytes to
// be returned upon successive calls to the method. This makes best use of the available entropy pool when
// only bytes size chunks of entropy are needed. Not available to public use since there is a method of using
// the default random method for the end-user to achieve the same results. This internal method is for providing
// that capability to the random method, shown below
uint8_t EntropyClass::random8(void)
{
static uint8_t byte_position=0;
uint8_t retVal8;
if (byte_position == 0)
share_entropy.int32 = random();
retVal8 = share_entropy.int8[byte_position++];
byte_position = byte_position % 4;
return(retVal8);
}
uint8_t EntropyClass::randomByte(void)
{
return random8();
}
// This function returns one word of a single 32-bit entropy value, while preserving the remaining word to
// be returned upon successive calls to the method. This makes best use of the available entropy pool when
// only word sized chunks of entropy are needed. Not available to public use since there is a method of using
// the default random method for the end-user to achieve the same results. This internal method is for providing
// that capability to the random method, shown below
uint16_t EntropyClass::random16(void)
{
static uint8_t word_position=0;
uint16_t retVal16;
if (word_position == 0)
share_entropy.int32 = random();
retVal16 = share_entropy.int16[word_position++];
word_position = word_position % 2;
return(retVal16);
}
uint16_t EntropyClass::randomWord(void)
{
return random16();
}
// This function returns a uniformly distributed integer in the range of
// of [0,max). The added complexity of this function is required to ensure
// a uniform distribution since the naive modulus max (% max) introduces
// bias for all values of max that are not powers of two.
//
// The loops below are needed, because there is a small and non-uniform chance
// That the division below will yield an answer = max, so we just get
// the next random value until answer < max. Which prevents the introduction
// of bias caused by the division process. This is why we can't use the
// simpler modulus operation which introduces significant bias for divisors
// that aren't a power of two
uint32_t EntropyClass::random(uint32_t max)
{
uint32_t slice;
if (max < 2)
retVal=0;
else
{
retVal = WDT_MAX_32INT;
if (max <= WDT_MAX_8INT) // If only byte values are needed, make best use of entropy
{ // by diving the long into four bytes and using individually
slice = WDT_MAX_8INT / max;
while (retVal >= max)
retVal = random8() / slice;
}
else if (max <= WDT_MAX_16INT) // If only word values are need, make best use of entropy
{ // by diving the long into two words and using individually
slice = WDT_MAX_16INT / max;
while (retVal >= max)
retVal = random16() / slice;
}
else
{
slice = WDT_MAX_32INT / max;
while (retVal >= max)
retVal = random() / slice;
}
}
return(retVal);
}
// This function returns a uniformly distributed integer in the range of
// of [min,max).
uint32_t EntropyClass::random(uint32_t min, uint32_t max)
{
uint32_t tmp_random, tmax;
tmax = max - min;
if (tmax < 1)
retVal=min;
else
{
tmp_random = random(tmax);
retVal = min + tmp_random;
}
return(retVal);
}
// This function returns a uniformly distributed single precision floating point
// in the range of [0.0,1.0)
float EntropyClass::randomf(void)
{
float fRetVal;
// Since c++ doesn't allow bit manipulations of floating point types, we are
// using integer type and arrange its bit pattern to follow the IEEE754 bit
// pattern for single precision floating point value in the range of 1.0 - 2.0
uint32_t tmp_random = random();
tmp_random = (tmp_random & 0x007FFFFF) | 0x3F800000;
// We then copy that binary representation from the temporary integer to the
// returned floating point value
memcpy((void *) &fRetVal, (void *) &tmp_random, sizeof(fRetVal));
// Now translate the value back to its intended range by subtracting 1.0
fRetVal = fRetVal - 1.0;
return (fRetVal);
}
// This function returns a uniformly distributed single precision floating point
// in the range of [0.0, max)
float EntropyClass::randomf(float max)
{
float fRetVal;
fRetVal = randomf() * max;
return(fRetVal);
}
// This function returns a uniformly distributed single precision floating point
// in the range of [min, max)
float EntropyClass::randomf(float min,float max)
{
float fRetVal;
float tmax;
tmax = max - min;
fRetVal = (randomf() * tmax) + min;
return(fRetVal);
}
// This function implements the Marsaglia polar method of converting a uniformly
// distributed random numbers to a normaly distributed (bell curve) with the
// mean and standard deviation specified. This type of random number is useful
// for a variety of purposes, like Monte Carlo simulations.
float EntropyClass::rnorm(float mean, float stdDev)
{
static float spare;
static float u1;
static float u2;
static float s;
static bool isSpareReady = false;
if (isSpareReady)
{
isSpareReady = false;
return ((spare * stdDev) + mean);
} else {
do {
u1 = (randomf() * 2) - 1;
u2 = (randomf() * 2) - 1;
s = (u1 * u1) + (u2 * u2);
} while (s >= 1.0);
s = sqrt(-2.0 * log(s) / s);
spare = u2 * s;
isSpareReady = true;
return(mean + (stdDev * u1 * s));
}
}
// This function returns a unsigned char (8-bit) with the number of unsigned long values
// in the entropy pool
uint8_t EntropyClass::available(void)
{
#ifdef ARDUINO_SAM_DUE
return(TRNG->TRNG_ISR & TRNG_ISR_DATRDY);
#else
return(gWDT_pool_count);
#endif
}
// Circular buffer is not needed with the speed of the Arduino Due trng hardware generator
#ifndef ARDUINO_SAM_DUE
// This interrupt service routine is called every time the WDT interrupt is triggered.
// With the default configuration that is approximately once every 16ms, producing
// approximately two 32-bit integer values every second.
//
// The pool is implemented as an 8 value circular buffer
static void isr_hardware_neutral(uint8_t val)
{
gWDT_buffer[gWDT_buffer_position] = val;
gWDT_buffer_position++; // every time the WDT interrupt is triggered
if (gWDT_buffer_position >= gWDT_buffer_SIZE)
{
gWDT_pool_end = (gWDT_pool_start + gWDT_pool_count) % WDT_POOL_SIZE;
// The following code is an implementation of Jenkin's one at a time hash
// This hash function has had preliminary testing to verify that it
// produces reasonably uniform random results when using WDT jitter
// on a variety of Arduino platforms
for(gWDT_loop_counter = 0; gWDT_loop_counter < gWDT_buffer_SIZE; ++gWDT_loop_counter)
{
gWDT_entropy_pool[gWDT_pool_end] += gWDT_buffer[gWDT_loop_counter];
gWDT_entropy_pool[gWDT_pool_end] += (gWDT_entropy_pool[gWDT_pool_end] << 10);
gWDT_entropy_pool[gWDT_pool_end] ^= (gWDT_entropy_pool[gWDT_pool_end] >> 6);
}
gWDT_entropy_pool[gWDT_pool_end] += (gWDT_entropy_pool[gWDT_pool_end] << 3);
gWDT_entropy_pool[gWDT_pool_end] ^= (gWDT_entropy_pool[gWDT_pool_end] >> 11);
gWDT_entropy_pool[gWDT_pool_end] += (gWDT_entropy_pool[gWDT_pool_end] << 15);
gWDT_entropy_pool[gWDT_pool_end] = gWDT_entropy_pool[gWDT_pool_end];
gWDT_buffer_position = 0; // Start collecting the next 32 bytes of Timer 1 counts
if (gWDT_pool_count == WDT_POOL_SIZE) // The entropy pool is full
gWDT_pool_start = (gWDT_pool_start + 1) % WDT_POOL_SIZE;
else // Add another unsigned long (32 bits) to the entropy pool
++gWDT_pool_count;
}
}
#endif
#if defined( __AVR_ATtiny25__ ) || defined( __AVR_ATtiny45__ ) || defined( __AVR_ATtiny85__ )
ISR(WDT_vect)
{
isr_hardware_neutral(TCNT0);
}
#elif defined(__AVR__)
ISR(WDT_vect)
{
isr_hardware_neutral(TCNT1L); // Record the Timer 1 low byte (only one needed)
}
#elif defined(__arm__) && defined(TEENSYDUINO)
void lptmr_isr(void)
{
LPTMR0_CSR = 0b10000100;
LPTMR0_CSR = 0b01000101;
isr_hardware_neutral(SYST_CVR);
}
#endif
// The library implements a single global instance. There is no need, nor will the library
// work properly if multiple instances are created.
EntropyClass Entropy;