forked from pclubiitk/model-zoo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
255 lines (222 loc) · 10.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import matplotlib.pyplot as plt
import cv2
%matplotlib inline
from model import *
from utils import *
import os
import time
import logging
import argparse
import numpy as np
import random
#Labels for VOC2012 dataset
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=50)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--lr', type=float, default=0.0005)
parser.add_argument('--beta_1', type=float, default=0.9)
parser.add_argument('--beta_2', type=float, default=0.999)
parser.add_argument('--iou', type=float, default=0.01)
LABELS = ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle',
'bus', 'car', 'cat', 'chair', 'cow',
'diningtable','dog', 'horse', 'motorbike', 'person',
'pottedplant','sheep', 'sofa', 'train', 'tvmonitor']
train_image_folder = "VOCdevkit/VOC2012/JPEGImages/"
train_annot_folder = "VOCdevkit/VOC2012/Annotations/"
train_image, seen_train_labels = parse_annotation(train_annot_folder,train_image_folder, labels=LABELS)
print("N train = {}".format(len(train_image)))
# checking features in our dataset
y_pos = np.arange(len(seen_train_labels))
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.barh(y_pos,list(seen_train_labels.values()))
ax.set_yticks(y_pos)
ax.set_yticklabels(list(seen_train_labels.keys()))
ax.set_title("The total number of objects = {} in {} images".format(
np.sum(list(seen_train_labels.values())),len(train_image)
))
plt.show()
# using kmeans to find anchor box
wh = []
for anno in train_image:
aw = float(anno['width']) # width of the original image
ah = float(anno['height']) # height of the original image
for obj in anno["object"]:
w = (obj["xmax"] - obj["xmin"])/aw # make the width range between [0,GRID_W)
h = (obj["ymax"] - obj["ymin"])/ah # make the width range between [0,GRID_H)
temp = [w,h]
wh.append(temp)
wh = np.array(wh)
print("clustering feature data is ready. shape = (N object, width and height) = {}".format(wh.shape))
kmax = 11
dist = np.mean
results = {}
for k in range(2,kmax):
clusters, nearest_clusters, distances = kmeans(wh,k,seed=2,dist=dist)
WithinClusterMeanDist = np.mean(distances[np.arange(distances.shape[0]),nearest_clusters])
result = {"clusters": clusters,
"nearest_clusters": nearest_clusters,
"distances": distances,
"WithinClusterMeanDist": WithinClusterMeanDist}
print("{:2.0f} clusters: mean IoU = {:5.4f}".format(k,1-result["WithinClusterMeanDist"]))
results[k] = result
Nanchor_box = 4
results[Nanchor_box]["clusters"]
# from above line we get anchor box we will using that anchor box further
_ANCHORS01 = np.array([0.08285376, 0.13705531,
0.20850361, 0.39420716,
0.80552421, 0.77665105,
0.42194719, 0.62385487])
# now we will convert images to size that we required
print("*"*30)
print("Input")
timage = train_image[5]
for key, v in timage.items():
print(" {}: {}".format(key,v))
print("*"*30)
print("Output")
inputEncoder = ImageReader(IMAGE_H=416,IMAGE_W=416, norm=normalize)
image, all_objs = inputEncoder.fit(timage)
print(" {}".format(all_objs))
plt.imshow(image)
plt.title("image.shape={}".format(image.shape))
plt.show()
GRID_H, GRID_W = 13 , 13
ANCHORS = _ANCHORS01
ANCHORS[::2] = ANCHORS[::2]*GRID_W
ANCHORS[1::2] = ANCHORS[1::2]*GRID_H
ANCHORS
BATCH_SIZE = 200
IMAGE_H, IMAGE_W = 416, 416
GRID_H, GRID_W = 13 , 13
TRUE_BOX_BUFFER = 50
BOX = int(len(ANCHORS)/2)
generator_config = {
'IMAGE_H' : IMAGE_H,
'IMAGE_W' : IMAGE_W,
'GRID_H' : GRID_H,
'GRID_W' : GRID_W,
'LABELS' : LABELS,
'ANCHORS' : ANCHORS,
'BATCH_SIZE' : BATCH_SIZE,
'TRUE_BOX_BUFFER' : TRUE_BOX_BUFFER,
}
train_batch_generator = SimpleBatchGenerator(train_image, generator_config,
norm=normalize, shuffle=True)
[x_batch,b_batch],y_batch = train_batch_generator.__getitem__(idx=3)
print("x_batch: (BATCH_SIZE, IMAGE_H, IMAGE_W, N channels) = {}".format(x_batch.shape))
print("y_batch: (BATCH_SIZE, GRID_H, GRID_W, BOX, 4 + 1 + N classes) = {}".format(y_batch.shape))
print("b_batch: (BATCH_SIZE, 1, 1, 1, TRUE_BOX_BUFFER, 4) = {}".format(b_batch.shape))
iframe= 1
check_object_in_grid_anchor_pair(iframe)
# following line will let us show how our encoder work
for irow in range(5,7):
print("-"*30)
check_object_in_grid_anchor_pair(irow)
plot_image_with_grid_cell_partition(irow)
plot_grid(irow)
plt.show()
# now calling our model and adding some more features to it
IMAGE_H, IMAGE_W = 416, 416
GRID_H, GRID_W = 13 , 13
TRUE_BOX_BUFFER = 50
BOX = int(len(ANCHORS)/2)
CLASS = len(LABELS)
## true_boxes is the tensor that takes "b_batch"
model, true_boxes = define_YOLOv2(IMAGE_H,IMAGE_W,GRID_H,GRID_W,TRUE_BOX_BUFFER,BOX,CLASS,
trainable=False)
model.summary()
path_to_weight = "yolov2.weights"
weight_reader = WeightReader(path_to_weight)
print("all_weights.shape = {}".format(weight_reader.all_weights.shape))
nb_conv = 22
model = set_pretrained_weight(model,nb_conv, path_to_weight)
# making
layer = model.layers[-4] # the last convolutional layer
initialize_weight(layer,sd=GRID_H*GRID_W)
# checking our loss function involved in the model
LAMBDA_NO_OBJECT = 1.0
LAMBDA_OBJECT = 5.0
LAMBDA_COORD = 1.0
LAMBDA_CLASS = 1.0
true_boxes = tf.Variable(np.zeros_like(b_batch),dtype="float32")
loss_tf = custom_loss(y_batch_tf, y_pred_tf)
loss = loss_tf
loss.numpy()
# training our model
train_batch_generator = SimpleBatchGenerator(train_image, generator_config,
norm=normalize, shuffle=True)
CLASS = len(LABELS)
model, true_boxes = define_YOLOv2(IMAGE_H,IMAGE_W,GRID_H,GRID_W,TRUE_BOX_BUFFER,BOX,CLASS,
trainable=False)
nb_conv = 22
model = set_pretrained_weight(model,nb_conv, path_to_weight)
layer = model.layers[-4] # the last convolutional layer
initialize_weight(layer,sd=1/(GRID_H*GRID_W))
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
from tensorflow.keras.optimizers import SGD, Adam, RMSprop
dir_log = "logs/"
try:
os.makedirs(dir_log)
except:
pass
BATCH_SIZE = args.batch_size
generator_config['BATCH_SIZE'] = BATCH_SIZE
early_stop = EarlyStopping(monitor='loss',
min_delta=0.001,
patience=3,
mode='min',
verbose=1)
checkpoint = ModelCheckpoint('weights_yolo_on_voc2012.h5',
monitor='loss',
verbose=1,
save_best_only=True,
mode='min',
period=1)
optimizer = Adam(lr=args.lr, beta_1=args.beta_1, beta_2=args.beta_2, epsilon=1e-08, decay=0.0)
model.compile(loss=custom_loss, optimizer=optimizer)
model.fit_generator(generator = train_batch_generator,
steps_per_epoch = len(train_batch_generator),
epochs = args.epochs,
verbose = 1,
#validation_data = valid_batch,
#validation_steps = len(valid_batch),
callbacks = [early_stop, checkpoint],
max_queue_size = 3)
#now training part is done we will check it on image
imageReader = ImageReader(IMAGE_H,IMAGE_W=IMAGE_W, norm=lambda image : image / 255.)
out = imageReader.fit(train_image_folder + "/2007_005430.jpg")
X_test = np.expand_dims(out,0)
dummy_array = np.zeros((1,1,1,1,TRUE_BOX_BUFFER,4))
y_pred = model.predict([X_test,dummy_array])
netout = y_pred[0]
outputRescaler = OutputRescaler(ANCHORS=ANCHORS)
netout_scale = outputRescaler.fit(netout)
iou_threshold = args.iou
final_boxes = nonmax_suppression(boxes,iou_threshold=iou_threshold,obj_threshold=obj_threshold)
ima = draw_boxes(X_test[0],final_boxes,LABELS,verbose=True)
figsize = (15,15)
plt.figure(figsize=figsize)
plt.imshow(ima);
plt.show()
def check_object_in_grid_anchor_pair(irow):
for igrid_h in range(generator_config["GRID_H"]):
for igrid_w in range(generator_config["GRID_W"]):
for ianchor in range(generator_config["BOX"]):
vec = y_batch[irow,igrid_h,igrid_w,ianchor,:]
C = vec[4] ## ground truth confidence
if C == 1:
class_nm = np.array(LABELS)[np.where(vec[5:])]
assert len(class_nm) == 1
print("igrid_h={:02.0f},igrid_w={:02.0f},iAnchor={:02.0f}, {}".format(
igrid_h,igrid_w,ianchor,class_nm[0]))
def normalize(image):
return image / 255.
def initialize_weight(layer,sd):
weights = layer.get_weights()
new_kernel = np.random.normal(size=weights[0].shape, scale=sd)
new_bias = np.random.normal(size=weights[1].shape, scale=sd)
layer.set_weights([new_kernel, new_bias])
if __name__ == '__main__':
main()