forked from pclubiitk/model-zoo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
112 lines (88 loc) · 4.25 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import torch
import torchvision
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
import torchvision.datasets as datasets # Has standard datasets we can import in a nice way
import torchvision.transforms as transforms # Transformations we can perform on our dataset
from torch.utils.data import DataLoader # Gives easier dataset managment and creates mini batches
from utils import *
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--num_epochs', type=int, default=10 , help="no. of epochs : default=10")
parser.add_argument('--batch_size', type=int, default=128, help="batch size : default=128")
parser.add_argument('--channels_noise', type=int, default=100, help="size of noise vector : default=100")
parser.add_argument('--lr_g', type=float, default=0.0002, help="learning rate generator : default=0.0002")
parser.add_argument('--lr_d', type=float, default=0.0002, help="learning rate discriminator : default=0.0002")
parser.add_argument('--beta1', type=float, default=0.5, help="bet1 value for adam optimizer" )
args = parser.parse_args()
lr_g = args.lr_g
lr_d = args.lr_d
beta1 = args.beta1
batch_size = args.batch_size
channels_noise = args.channels_noise
num_epochs = args.num_epochs
image_size = 64
features_d = 128
features_g = 128
channels_img = 1
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
my_transforms = transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
transforms.Normalize((0.5,),(0.5,)),
])
dataset = datasets.MNIST(root='dataset/', train=True, transform=my_transforms, download=True)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=2)
from models import Generator , Discriminator , weights_init
netD = Discriminator(channels_img, features_d).to(device)
netG = Generator(channels_noise, channels_img, features_g).to(device)
netG=netG.apply(weights_init)
netD=netD.apply(weights_init)
optimizerD = optim.Adam(netD.parameters(), lr=lr_d, betas=(beta1, 0.999) )
optimizerG = optim.Adam(netG.parameters(), lr=lr_g, betas=(beta1, 0.999) )
criterion = nn.BCELoss()
real_label = 1
fake_label = 0
fixed_noise = torch.randn(batch_size, channels_noise, 1, 1).to(device)
img_list = []
G_losses = []
D_losses = []
for epoch in range(num_epochs):
for batch_idx, (data, targets) in enumerate(dataloader):
data = data.to(device)
batch_size = data.shape[0]
# Train Discriminator: max log(D(x)) + log(1 - D(G(z)))
netD.zero_grad()
label = (torch.ones(batch_size)*0.9).to(device)
output = netD(data).view(-1)
lossD_real = criterion(output, label)
D_x = output.mean().item()
noise = torch.randn(batch_size, channels_noise, 1, 1).to(device)
fake = netG(noise)
label = (torch.ones(batch_size)*0.1).to(device)
output = netD(fake.detach()).view(-1)
lossD_fake = criterion(output, label)
lossD = lossD_real + lossD_fake
lossD.backward()
optimizerD.step()
# Train Generator: max log(D(G(z)))
netG.zero_grad()
label = torch.ones(batch_size).to(device)
output = netD(fake).reshape(-1)
lossG = criterion(output, label)
lossG.backward()
optimizerG.step()
D_G_x = output.mean().item()
if batch_idx % 100 == 0:
# Print losses ocassionally
print(f'Epoch [{epoch}/{num_epochs}] Batch {batch_idx}/{len(dataloader)} Loss D: {lossD:.4f} loss G: {lossG:.4f} D(x): {D_x:.4f} D(G(z)): {D_G_x:.4f} ')
G_losses.append(lossG.item())
D_losses.append(lossD.item())
# Check how the generator is doing by saving G's output on fixed_noise
with torch.no_grad():
fake = netG(fixed_noise).detach().cpu()
img_list.append(torchvision.utils.make_grid(fake, padding=2, normalize=True))
with torch.no_grad():
fake = netG(fixed_noise)
compare_img(data,fake) # compare generated imgs with real mnist images
plot_loss(G_losses,D_losses) # visualise losses vs iterations