-
Notifications
You must be signed in to change notification settings - Fork 1
/
dataloader.py
52 lines (47 loc) · 1.51 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
import torch.nn as nn
import torch.nn as nn
import torch.optim
import torch.utils.data
import torch.backends.cudnn
import torchvision.utils
import torch.nn.functional as F
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.metrics import confusion_matrix
import time
import torchvision.transforms as transforms
import torchvision
import torchvision.transforms as transforms
import torchvision
import torch
def get_loader(batch_size, num_workers):
transform = transforms.Compose(
[
transforms.Pad(4),
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
]
)
test_transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
]
)
train_dataset = torchvision.datasets.CIFAR10(
root="../../data/", train=True, transform=transform, download=True
)
test_dataset = torchvision.datasets.CIFAR10(
root="../../data/", train=False, transform=test_transform
)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset, batch_size=100, shuffle=True
)
test_loader = torch.utils.data.DataLoader(
dataset=test_dataset, batch_size=100, shuffle=False
)
return train_loader, test_loader