You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hello, I would like to ask how to run the code in autoregressive form. I tried to run it with "--non_autoregressive" removed, and the code does show autoregressive form: python training/transformer_model_fn.py \ --model_prefix=${POTR_OUT} \ --batch_size=16 \ --data_path=${H36M} \ --learning_rate=0.0001 \ --max_epochs=500 \ --steps_per_epoch=200 \ --loss_fn=l1 \ --model_dim=128 \ --num_encoder_layers=4 \ --num_decoder_layers=4 \ --num_heads=4 \ --dim_ffn=2048 \ --dropout=0.3 \ --lr_step_size=400 \ --learning_rate_fn=step \ --warmup_epochs=100 \ --pose_format=rotmat \ --pose_embedding_type=gcn_enc \ --dataset=h36m_v2 \ --pre_normalization \ --pad_decoder_inputs \ --pos_enc_alpha=10 \ --pos_enc_beta=500 \ --predict_activity \ --action=all
but the following error appears: What should I do please? Traceback (most recent call last): File "../potr_main/training/transformer_model_fn.py", line 231, in <module> model_fn.train() File "../potr_main/training/../training/seq2seq_model_fn.py", line 308, in train eval_loss = self.evaluate_fn(e, _time)#eval() 这是画表吧 File "/opt/conda/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 26, in decorate_context return func(*args, **kwargs) File "../potr_main/training/../training/seq2seq_model_fn.py", line 524, in evaluate_h36m decoder_pred = self._model( File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "../potr_main/data/../models/PoseTransformer.py", line 203, in forward return self.forward_autoregressive( File "../potr_main/data/../models/PoseTransformer.py", line 421, in forward_autoregressive pose_code = self._pose_embedding(pred_pose) File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "../potr_main/data/../models/PoseGCN.py", line 350, in forward B, S, D = x.size() ValueError: not enough values to unpack (expected 3, got 2)
The text was updated successfully, but these errors were encountered:
Hello, I would like to ask how to run the code in autoregressive form. I tried to run it with "--non_autoregressive" removed, and the code does show autoregressive form:
python training/transformer_model_fn.py \ --model_prefix=${POTR_OUT} \ --batch_size=16 \ --data_path=${H36M} \ --learning_rate=0.0001 \ --max_epochs=500 \ --steps_per_epoch=200 \ --loss_fn=l1 \ --model_dim=128 \ --num_encoder_layers=4 \ --num_decoder_layers=4 \ --num_heads=4 \ --dim_ffn=2048 \ --dropout=0.3 \ --lr_step_size=400 \ --learning_rate_fn=step \ --warmup_epochs=100 \ --pose_format=rotmat \ --pose_embedding_type=gcn_enc \ --dataset=h36m_v2 \ --pre_normalization \ --pad_decoder_inputs \ --pos_enc_alpha=10 \ --pos_enc_beta=500 \ --predict_activity \ --action=all
but the following error appears: What should I do please?
Traceback (most recent call last): File "../potr_main/training/transformer_model_fn.py", line 231, in <module> model_fn.train() File "../potr_main/training/../training/seq2seq_model_fn.py", line 308, in train eval_loss = self.evaluate_fn(e, _time)#eval() 这是画表吧 File "/opt/conda/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 26, in decorate_context return func(*args, **kwargs) File "../potr_main/training/../training/seq2seq_model_fn.py", line 524, in evaluate_h36m decoder_pred = self._model( File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "../potr_main/data/../models/PoseTransformer.py", line 203, in forward return self.forward_autoregressive( File "../potr_main/data/../models/PoseTransformer.py", line 421, in forward_autoregressive pose_code = self._pose_embedding(pred_pose) File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "../potr_main/data/../models/PoseGCN.py", line 350, in forward B, S, D = x.size() ValueError: not enough values to unpack (expected 3, got 2)
The text was updated successfully, but these errors were encountered: