-
Notifications
You must be signed in to change notification settings - Fork 213
/
poseidon.js
80 lines (64 loc) · 3.04 KB
/
poseidon.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
const assert = require("assert");
const Scalar = require("ffjavascript").Scalar;
const ZqField = require("ffjavascript").ZqField;
const { unstringifyBigInts } = require("ffjavascript").utils;
// const F = new ZqField(Scalar.fromString("0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001")); // bls
const F = new ZqField(Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617")); // bn128
// Parameters are generated by a reference script https://extgit.iaik.tugraz.at/krypto/hadeshash/-/blob/master/code/generate_parameters_grain.sage
// Used like so: sage generate_parameters_grain.sage 1 0 254 2 8 56 0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001
const opt = unstringifyBigInts(require("./poseidon_constants_opt.json"));
// Using recommended parameters from whitepaper https://eprint.iacr.org/2019/458.pdf (table 2, table 8)
// Generated by https://extgit.iaik.tugraz.at/krypto/hadeshash/-/blob/master/code/calc_round_numbers.py
// And rounded up to nearest integer that divides by t
const N_ROUNDS_F = 8;
const N_ROUNDS_P = [56, 57, 56, 60, 60, 63, 64, 63, 60, 66, 60, 65, 70, 60, 64, 68];
const pow5 = a => F.mul(a, F.square(F.square(a, a)));
function poseidon(inputs) {
assert(inputs.length > 0);
assert(inputs.length < N_ROUNDS_P.length - 1);
const t = inputs.length + 1;
const nRoundsF = N_ROUNDS_F;
const nRoundsP = N_ROUNDS_P[t - 2];
const C = opt.C[t-2];
const S = opt.S[t-2];
const M = opt.M[t-2];
const P = opt.P[t-2];
let state = [F.zero, ...inputs.map(a => F.e(a))];
state = state.map((a, i) => F.add(a, C[i]));
for (let r = 0; r < nRoundsF/2-1; r++) {
state = state.map(a => pow5(a));
state = state.map((a, i) => F.add(a, C[(r +1)* t +i]));
state = state.map((_, i) =>
state.reduce((acc, a, j) => F.add(acc, F.mul(M[j][i], a)), F.zero)
);
}
state = state.map(a => pow5(a));
state = state.map((a, i) => F.add(a, C[(nRoundsF/2-1 +1)* t +i]));
state = state.map((_, i) =>
state.reduce((acc, a, j) => F.add(acc, F.mul(P[j][i], a)), F.zero)
);
for (let r = 0; r < nRoundsP; r++) {
state[0] = pow5(state[0]);
state[0] = F.add(state[0], C[(nRoundsF/2 +1)*t + r]);
const s0 = state.reduce((acc, a, j) => {
return F.add(acc, F.mul(S[(t*2-1)*r+j], a));
}, F.zero);
for (let k=1; k<t; k++) {
state[k] = F.add(state[k], F.mul(state[0], S[(t*2-1)*r+t+k-1] ));
}
state[0] =s0;
}
for (let r = 0; r < nRoundsF/2-1; r++) {
state = state.map(a => pow5(a));
state = state.map((a, i) => F.add(a, C[ (nRoundsF/2 +1)*t + nRoundsP + r*t + i ]));
state = state.map((_, i) =>
state.reduce((acc, a, j) => F.add(acc, F.mul(M[j][i], a)), F.zero)
);
}
state = state.map(a => pow5(a));
state = state.map((_, i) =>
state.reduce((acc, a, j) => F.add(acc, F.mul(M[j][i], a)), F.zero)
);
return F.normalize(state[0]);
}
module.exports = poseidon;