forked from NoamRosenberg/autodeeplab
-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_new_model.py
336 lines (303 loc) · 15.2 KB
/
train_new_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import argparse
import os
import numpy as np
from tqdm import tqdm
from mypath import Path
from dataloaders import make_data_loader
from modeling.sync_batchnorm.replicate import patch_replication_callback
from modeling.deeplab import *
from utils.loss import SegmentationLosses
from utils.calculate_weights import calculate_weigths_labels
from utils.lr_scheduler import LR_Scheduler
from utils.saver import Saver
from utils.summaries import TensorboardSummary
from utils.metrics import Evaluator
from new_model import newModel
class trainNew(object):
def __init__(self, args):
self.args = args
# Define Saver
self.saver = Saver(args)
self.saver.save_experiment_config()
# Define Tensorboard Summary
self.summary = TensorboardSummary(self.saver.experiment_dir)
self.writer = self.summary.create_summary()
# Define Dataloader
kwargs = {'num_workers': args.workers, 'pin_memory': True}
self.train_loader, self.val_loader, self.test_loader, self.nclass = make_data_loader(args, **kwargs)
cell_path = os.path.join(args.saved_arch_path, 'genotype.npy')
network_path_space = os.path.join(args.saved_arch_path, 'network_path_space.npy')
new_cell_arch = np.load(cell_path)
new_network_arch = np.load(network_path_space)
# Define network
model = newModel(network_arch= new_network_arch,
cell_arch = new_cell_arch,
num_classes=self.nclass,
num_layers=12)
# output_stride=args.out_stride,
# sync_bn=args.sync_bn,
# freeze_bn=args.freeze_bn)
# TODO: look into these
# TODO: ALSO look into different param groups as done int deeplab below
# train_params = [{'params': model.get_1x_lr_params(), 'lr': args.lr},
# {'params': model.get_10x_lr_params(), 'lr': args.lr * 10}]
#
train_params = [{'params': model.parameters(), 'lr': args.lr}]
# Define Optimizer
optimizer = torch.optim.SGD(train_params, momentum=args.momentum,
weight_decay=args.weight_decay, nesterov=args.nesterov)
# Define Criterion
# whether to use class balanced weights
if args.use_balanced_weights:
classes_weights_path = os.path.join(Path.db_root_dir(args.dataset), args.dataset + '_classes_weights.npy')
if os.path.isfile(classes_weights_path):
weight = np.load(classes_weights_path)
else:
weight = calculate_weigths_labels(args.dataset, self.train_loader, self.nclass)
weight = torch.from_numpy(weight.astype(np.float32))
else:
weight = None
self.criterion = SegmentationLosses(weight=weight, cuda=args.cuda).build_loss(mode=args.loss_type)
self.model, self.optimizer = model, optimizer
# Define Evaluator
self.evaluator = Evaluator(self.nclass)
# Define lr scheduler
self.scheduler = LR_Scheduler(args.lr_scheduler, args.lr,
args.epochs, len(self.train_loader)) #TODO: use min_lr ?
# TODO: Figure out if len(self.train_loader) should be devided by two ? in other module as well
# Using cuda
if args.cuda:
if (torch.cuda.device_count() > 1 or args.load_parallel):
self.model = torch.nn.DataParallel(self.model.cuda())
patch_replication_callback(self.model)
self.model = self.model.cuda()
print('cuda finished')
# Resuming checkpoint
self.best_pred = 0.0
if args.resume is not None:
if not os.path.isfile(args.resume):
raise RuntimeError("=> no checkpoint found at '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
# if the weights are wrapped in module object we have to clean it
if args.clean_module:
self.model.load_state_dict(checkpoint['state_dict'])
state_dict = checkpoint['state_dict']
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove 'module.' of dataparallel
new_state_dict[name] = v
self.model.load_state_dict(new_state_dict)
else:
if (torch.cuda.device_count() > 1 or args.load_parallel):
self.model.module.load_state_dict(checkpoint['state_dict'])
else:
self.model.load_state_dict(checkpoint['state_dict'])
if not args.ft:
self.optimizer.load_state_dict(checkpoint['optimizer'])
self.best_pred = checkpoint['best_pred']
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
# Clear start epoch if fine-tuning
if args.ft:
args.start_epoch = 0
def training(self, epoch):
train_loss = 0.0
self.model.train()
tbar = tqdm(self.train_loader)
num_img_tr = len(self.train_loader)
for i, sample in enumerate(tbar):
image, target = sample['image'], sample['label']
if self.args.cuda:
image, target = image.cuda(), target.cuda()
self.scheduler(self.optimizer, i, epoch, self.best_pred)
self.optimizer.zero_grad()
output = self.model(image)
loss = self.criterion(output, target)
loss.backward()
self.optimizer.step()
train_loss += loss.item()
tbar.set_description('Train loss: %.3f' % (train_loss / (i + 1)))
self.writer.add_scalar('train/total_loss_iter', loss.item(), i + num_img_tr * epoch)
# Show 10 * 3 inference results each epoch
if i % (num_img_tr // 10) == 0:
global_step = i + num_img_tr * epoch
self.summary.visualize_image(self.writer, self.args.dataset, image, target, output, global_step)
self.writer.add_scalar('train/total_loss_epoch', train_loss, epoch)
print('[Epoch: %d, numImages: %5d]' % (epoch, i * self.args.batch_size + image.data.shape[0]))
print('Loss: %.3f' % train_loss)
if self.args.no_val:
# save checkpoint every epoch
is_best = False
self.saver.save_checkpoint({
'epoch': epoch + 1,
'state_dict': self.model.module.state_dict(),
'optimizer': self.optimizer.state_dict(),
'best_pred': self.best_pred,
}, is_best)
def validation(self, epoch):
self.model.eval()
self.evaluator.reset()
tbar = tqdm(self.val_loader, desc='\r')
test_loss = 0.0
for i, sample in enumerate(tbar):
image, target = sample['image'], sample['label']
if self.args.cuda:
image, target = image.cuda(), target.cuda()
with torch.no_grad():
output = self.model(image)
loss = self.criterion(output, target)
test_loss += loss.item()
tbar.set_description('Test loss: %.3f' % (test_loss / (i + 1)))
pred = output.data.cpu().numpy()
target = target.cpu().numpy()
pred = np.argmax(pred, axis=1)
# Add batch sample into evaluator
self.evaluator.add_batch(target, pred)
# Fast test during the training
Acc = self.evaluator.Pixel_Accuracy()
Acc_class = self.evaluator.Pixel_Accuracy_Class()
mIoU = self.evaluator.Mean_Intersection_over_Union()
FWIoU = self.evaluator.Frequency_Weighted_Intersection_over_Union()
self.writer.add_scalar('val/total_loss_epoch', test_loss, epoch)
self.writer.add_scalar('val/mIoU', mIoU, epoch)
self.writer.add_scalar('val/Acc', Acc, epoch)
self.writer.add_scalar('val/Acc_class', Acc_class, epoch)
self.writer.add_scalar('val/fwIoU', FWIoU, epoch)
print('Validation:')
print('[Epoch: %d, numImages: %5d]' % (epoch, i * self.args.batch_size + image.data.shape[0]))
print("Acc:{}, Acc_class:{}, mIoU:{}, fwIoU: {}".format(Acc, Acc_class, mIoU, FWIoU))
print('Loss: %.3f' % test_loss)
new_pred = mIoU
if new_pred > self.best_pred:
is_best = True
self.best_pred = new_pred
self.saver.save_checkpoint({
'epoch': epoch + 1,
'state_dict': self.model.module.state_dict(),
'optimizer': self.optimizer.state_dict(),
'best_pred': self.best_pred,
}, is_best)
def main():
parser = argparse.ArgumentParser(description="PyTorch DeeplabV3Plus Training")
parser.add_argument('--backbone', type=str, default='resnet',
choices=['resnet', 'xception', 'drn', 'mobilenet'],
help='backbone name (default: resnet)')
parser.add_argument('--out-stride', type=int, default=16,
help='network output stride (default: 8)')
parser.add_argument('--dataset', type=str, default='cityscapes',
choices=['pascal', 'coco', 'cityscapes'],
help='dataset name (default: pascal)')
parser.add_argument('--use-sbd', action='store_true', default=True,
help='whether to use SBD dataset (default: True)')
parser.add_argument('--workers', type=int, default=4,
metavar='N', help='dataloader threads')
parser.add_argument('--crop_size', type=int, default=320,
help='crop image size')
parser.add_argument('--resize', type=int, default=512,
help='resize image size')
parser.add_argument('--sync-bn', type=bool, default=None,
help='whether to use sync bn (default: auto)')
parser.add_argument('--freeze-bn', type=bool, default=False,
help='whether to freeze bn parameters (default: False)')
parser.add_argument('--loss-type', type=str, default='ce',
choices=['ce', 'focal'],
help='loss func type (default: ce)')
# training hyper params
parser.add_argument('--epochs', type=int, default=None, metavar='N',
help='number of epochs to train (default: auto)')
parser.add_argument('--start_epoch', type=int, default=0,
metavar='N', help='start epochs (default:0)')
parser.add_argument('--batch-size', type=int, default=None,
metavar='N', help='input batch size for \
training (default: auto)')
parser.add_argument('--test-batch-size', type=int, default=None,
metavar='N', help='input batch size for \
testing (default: auto)')
parser.add_argument('--use-balanced-weights', action='store_true', default=False,
help='whether to use balanced weights (default: False)')
# optimizer params
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (default: auto)')
parser.add_argument('--lr-scheduler', type=str, default='poly',
choices=['poly', 'step', 'cos'],
help='lr scheduler mode: (default: poly)')
parser.add_argument('--momentum', type=float, default=0.9,
metavar='M', help='momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=5e-4,
metavar='M', help='w-decay (default: 5e-4)')
parser.add_argument('--nesterov', action='store_true', default=False,
help='whether use nesterov (default: False)')
# cuda, seed and logging
parser.add_argument('--no-cuda', action='store_true', default=
False, help='disables CUDA training')
parser.add_argument('--gpu-ids', type=str, default='0',
help='use which gpu to train, must be a \
comma-separated list of integers only (default=0)')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
# checking point
parser.add_argument('--resume', type=str, default=None,
help='put the path to resuming file if needed')
parser.add_argument('--saved-arch-path', type=str, default=None,
help='put the path to alphas and betas')
parser.add_argument('--checkname', type=str, default=None,
help='set the checkpoint name')
# finetuning pre-trained models
parser.add_argument('--ft', action='store_true', default=False,
help='finetuning on a different dataset')
# evaluation option
parser.add_argument('--eval-interval', type=int, default=1,
help='evaluuation interval (default: 1)')
parser.add_argument('--no-val', action='store_true', default=False,
help='skip validation during training')
parser.add_argument('--filter_multiplier', type=int, default=20)
parser.add_argument('--autodeeplab', type=str, default='train',
choices=['search', 'train'])
parser.add_argument('--load-parallel', type=int, default=0)
parser.add_argument('--min_lr', type=float, default=0.001) #TODO: CHECK THAT THEY EVEN DO THIS FOR THE MODEL IN THE PAPER
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
if args.cuda:
try:
args.gpu_ids = [int(s) for s in args.gpu_ids.split(',')]
except ValueError:
raise ValueError('Argument --gpu_ids must be a comma-separated list of integers only')
if args.sync_bn is None:
if args.cuda and len(args.gpu_ids) > 1:
args.sync_bn = True
else:
args.sync_bn = False
# default settings for epochs, batch_size and lr
if args.epochs is None:
epoches = {
'coco': 30,
'cityscapes': 200,
'pascal': 50,
}
args.epochs = epoches[args.dataset.lower()]
if args.batch_size is None:
args.batch_size = 4 * len(args.gpu_ids)
if args.test_batch_size is None:
args.test_batch_size = args.batch_size
if args.lr is None:
lrs = {
'coco': 0.1,
'cityscapes': 0.01,
'pascal': 0.007,
}
args.lr = lrs[args.dataset.lower()] / (4 * len(args.gpu_ids)) * args.batch_size
if args.checkname is None:
args.checkname = 'deeplab-'+str(args.backbone)
print(args)
torch.manual_seed(args.seed)
new_trainer = trainNew(args)
print('Starting Epoch:', new_trainer.args.start_epoch)
print('Total Epoches:', new_trainer.args.epochs)
for epoch in range(new_trainer.args.start_epoch, new_trainer.args.epochs):
new_trainer.training(epoch)
if not new_trainer.args.no_val and epoch % args.eval_interval == (args.eval_interval - 1):
new_trainer.validation(epoch)
new_trainer.writer.close()
if __name__ == "__main__":
main()