-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
121 lines (104 loc) · 3.52 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import argparse
import collections
import warnings
import numpy as np
import torch
import src.loss as module_loss
import src.metric as module_metric
import src.model as module_arch
from src.trainer import Trainer
from src.utils import prepare_device
from src.utils.data_loading import get_dataloaders
from src.utils.parse_config import ConfigParser
warnings.filterwarnings("ignore", category=UserWarning)
# fix random seeds for reproducibility
SEED = 123
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(SEED)
def main(config):
logger = config.get_logger("train")
# tokenizer
tokenizer = config.get_tokenizer()
# setup data_loader instances
dataloaders = get_dataloaders(config, tokenizer)
# build model architecture, then print to console
model = config.init_obj(config["arch"], module_arch, num_embeddings=len(tokenizer))
logger.info(model)
# prepare for (multi-device) GPU training
device, device_ids = prepare_device(config["n_gpu"])
model = model.to(device)
if len(device_ids) > 1:
model = torch.nn.DataParallel(model, device_ids=device_ids)
# get function handles of loss and metrics
loss_module = config.init_obj(config["loss"], module_loss).to(device)
train_metrics = [
config.init_obj(metric_dict, module_metric, tokenizer=tokenizer)
for metric_dict in config["train_metrics"]
]
valid_metrics = [
config.init_obj(metric_dict, module_metric, tokenizer=tokenizer)
for metric_dict in config["valid_metrics"]
]
# build optimizer, learning rate scheduler. delete every line containing lr_scheduler for
# disabling scheduler
trainable_params = filter(lambda p: p.requires_grad, model.parameters())
optimizer = config.init_obj(config["optimizer"], torch.optim, trainable_params)
lr_scheduler = None
if "lr_scheduler" in config.config:
lr_scheduler = config.init_obj(config["lr_scheduler"], torch.optim.lr_scheduler, optimizer)
trainer = Trainer(
model,
loss_module,
train_metrics,
valid_metrics,
optimizer,
tokenizer=tokenizer,
config=config,
device=device,
dataloaders=dataloaders,
lr_scheduler=lr_scheduler,
len_epoch=config["trainer"].get("len_epoch", None)
)
trainer.train()
if __name__ == "__main__":
args = argparse.ArgumentParser(description="PyTorch Template")
args.add_argument(
"-c",
"--config",
default=None,
type=str,
help="config file path (default: None)",
)
args.add_argument(
"-r",
"--resume",
default=None,
type=str,
help="path to latest checkpoint (default: None)",
)
args.add_argument(
"-f",
"--finetune",
default=None,
type=str,
help="path to pretrained checkpoint (default: None)"
)
args.add_argument(
"-d",
"--device",
default=None,
type=str,
help="indices of GPUs to enable (default: all)",
)
# custom cli options to modify configuration from default values given in json file.
CustomArgs = collections.namedtuple("CustomArgs", "flags type target")
options = [
CustomArgs(["--lr", "--learning_rate"], type=float, target="optimizer;args;lr"),
CustomArgs(
["--bs", "--batch_size"], type=int, target="data_loader;args;batch_size"
),
]
config = ConfigParser.from_args(args, options)
main(config)