-
Notifications
You must be signed in to change notification settings - Fork 52
/
vfnet_head.py
794 lines (719 loc) · 34.6 KB
/
vfnet_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
import numpy as np
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, Scale, bias_init_with_prob, normal_init
from mmcv.ops import DeformConv2d
from mmcv.runner import force_fp32
from mmdet.core import (bbox2distance, bbox_overlaps, build_anchor_generator,
build_assigner, build_sampler, distance2bbox,
multi_apply, multiclass_nms, reduce_mean)
from ..builder import HEADS, build_loss
from .atss_head import ATSSHead
from .fcos_head import FCOSHead
INF = 1e8
@HEADS.register_module()
class VFNetHead(ATSSHead, FCOSHead):
"""Head of `VarifocalNet (VFNet): An IoU-aware Dense Object
Detector.<https://arxiv.org/abs/2008.13367>`_.
The VFNet predicts IoU-aware classification scores which mix the
object presence confidence and object localization accuracy as the
detection score. It is built on the FCOS architecture and uses ATSS
for defining positive/negative training examples. The VFNet is trained
with Varifocal Loss and empolys star-shaped deformable convolution to
extract features for a bbox.
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (int): Number of channels in the input feature map.
regress_ranges (tuple[tuple[int, int]]): Regress range of multiple
level points.
center_sampling (bool): If true, use center sampling. Default: False.
center_sample_radius (float): Radius of center sampling. Default: 1.5.
sync_num_pos (bool): If true, synchronize the number of positive
examples across GPUs. Default: True
gradient_mul (float): The multiplier to gradients from bbox refinement
and recognition. Default: 0.1.
bbox_norm_type (str): The bbox normalization type, 'reg_denom' or
'stride'. Default: reg_denom
loss_cls_fl (dict): Config of focal loss.
use_vfl (bool): If true, use varifocal loss for training.
Default: True.
loss_cls (dict): Config of varifocal loss.
loss_bbox (dict): Config of localization loss, GIoU Loss.
loss_bbox (dict): Config of localization refinement loss, GIoU Loss.
norm_cfg (dict): dictionary to construct and config norm layer.
Default: norm_cfg=dict(type='GN', num_groups=32,
requires_grad=True).
use_atss (bool): If true, use ATSS to define positive/negative
examples. Default: True.
anchor_generator (dict): Config of anchor generator for ATSS.
Example:
>>> self = VFNetHead(11, 7)
>>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]]
>>> cls_score, bbox_pred, bbox_pred_refine= self.forward(feats)
>>> assert len(cls_score) == len(self.scales)
""" # noqa: E501
def __init__(self,
num_classes,
in_channels,
regress_ranges=((-1, 64), (64, 128), (128, 256), (256, 512),
(512, INF)),
center_sampling=False,
center_sample_radius=1.5,
sync_num_pos=True,
gradient_mul=0.1,
bbox_norm_type='reg_denom',
loss_cls_fl=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
use_vfl=True,
loss_cls=dict(
type='VarifocalLoss',
use_sigmoid=True,
alpha=0.75,
gamma=2.0,
iou_weighted=True,
loss_weight=1.0),
loss_bbox=dict(type='GIoULoss', loss_weight=1.5),
loss_bbox_refine=dict(type='GIoULoss', loss_weight=2.0),
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True),
use_atss=True,
anchor_generator=dict(
type='AnchorGenerator',
ratios=[1.0],
octave_base_scale=8,
scales_per_octave=1,
center_offset=0.0,
strides=[8, 16, 32, 64, 128]),
**kwargs):
# dcn base offsets, adapted from reppoints_head.py
self.num_dconv_points = 9
self.dcn_kernel = int(np.sqrt(self.num_dconv_points))
self.dcn_pad = int((self.dcn_kernel - 1) / 2)
dcn_base = np.arange(-self.dcn_pad,
self.dcn_pad + 1).astype(np.float64)
dcn_base_y = np.repeat(dcn_base, self.dcn_kernel)
dcn_base_x = np.tile(dcn_base, self.dcn_kernel)
dcn_base_offset = np.stack([dcn_base_y, dcn_base_x], axis=1).reshape(
(-1))
self.dcn_base_offset = torch.tensor(dcn_base_offset).view(1, -1, 1, 1)
super(FCOSHead, self).__init__(
num_classes, in_channels, norm_cfg=norm_cfg, **kwargs)
self.regress_ranges = regress_ranges
self.reg_denoms = [
regress_range[-1] for regress_range in regress_ranges
]
self.reg_denoms[-1] = self.reg_denoms[-2] * 2
self.center_sampling = center_sampling
self.center_sample_radius = center_sample_radius
self.sync_num_pos = sync_num_pos
self.bbox_norm_type = bbox_norm_type
self.gradient_mul = gradient_mul
self.use_vfl = use_vfl
if self.use_vfl:
self.loss_cls = build_loss(loss_cls)
else:
self.loss_cls = build_loss(loss_cls_fl)
self.loss_bbox = build_loss(loss_bbox)
self.loss_bbox_refine = build_loss(loss_bbox_refine)
# for getting ATSS targets
self.use_atss = use_atss
self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False)
self.anchor_generator = build_anchor_generator(anchor_generator)
self.anchor_center_offset = anchor_generator['center_offset']
self.num_anchors = self.anchor_generator.num_base_anchors[0]
self.sampling = False
if self.train_cfg:
self.assigner = build_assigner(self.train_cfg.assigner)
sampler_cfg = dict(type='PseudoSampler')
self.sampler = build_sampler(sampler_cfg, context=self)
def _init_layers(self):
"""Initialize layers of the head."""
super(FCOSHead, self)._init_cls_convs()
super(FCOSHead, self)._init_reg_convs()
self.relu = nn.ReLU(inplace=True)
self.vfnet_reg_conv = ConvModule(
self.feat_channels,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
bias=self.conv_bias)
self.vfnet_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1)
self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides])
self.vfnet_reg_refine_dconv = DeformConv2d(
self.feat_channels,
self.feat_channels,
self.dcn_kernel,
1,
padding=self.dcn_pad)
self.vfnet_reg_refine = nn.Conv2d(self.feat_channels, 4, 3, padding=1)
self.scales_refine = nn.ModuleList([Scale(1.0) for _ in self.strides])
self.vfnet_cls_dconv = DeformConv2d(
self.feat_channels,
self.feat_channels,
self.dcn_kernel,
1,
padding=self.dcn_pad)
self.vfnet_cls = nn.Conv2d(
self.feat_channels, self.cls_out_channels, 3, padding=1)
def init_weights(self):
"""Initialize weights of the head."""
for m in self.cls_convs:
if isinstance(m.conv, nn.Conv2d):
normal_init(m.conv, std=0.01)
for m in self.reg_convs:
if isinstance(m.conv, nn.Conv2d):
normal_init(m.conv, std=0.01)
normal_init(self.vfnet_reg_conv.conv, std=0.01)
normal_init(self.vfnet_reg, std=0.01)
normal_init(self.vfnet_reg_refine_dconv, std=0.01)
normal_init(self.vfnet_reg_refine, std=0.01)
normal_init(self.vfnet_cls_dconv, std=0.01)
bias_cls = bias_init_with_prob(0.01)
normal_init(self.vfnet_cls, std=0.01, bias=bias_cls)
def forward(self, feats):
"""Forward features from the upstream network.
Args:
feats (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
tuple:
cls_scores (list[Tensor]): Box iou-aware scores for each scale
level, each is a 4D-tensor, the channel number is
num_points * num_classes.
bbox_preds (list[Tensor]): Box offsets for each
scale level, each is a 4D-tensor, the channel number is
num_points * 4.
bbox_preds_refine (list[Tensor]): Refined Box offsets for
each scale level, each is a 4D-tensor, the channel
number is num_points * 4.
"""
return multi_apply(self.forward_single, feats, self.scales,
self.scales_refine, self.strides, self.reg_denoms)
def forward_single(self, x, scale, scale_refine, stride, reg_denom):
"""Forward features of a single scale level.
Args:
x (Tensor): FPN feature maps of the specified stride.
scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize
the bbox prediction.
scale_refine (:obj: `mmcv.cnn.Scale`): Learnable scale module to
resize the refined bbox prediction.
stride (int): The corresponding stride for feature maps,
used to normalize the bbox prediction when
bbox_norm_type = 'stride'.
reg_denom (int): The corresponding regression range for feature
maps, only used to normalize the bbox prediction when
bbox_norm_type = 'reg_denom'.
Returns:
tuple: iou-aware cls scores for each box, bbox predictions and
refined bbox predictions of input feature maps.
"""
cls_feat = x
reg_feat = x
for cls_layer in self.cls_convs:
cls_feat = cls_layer(cls_feat)
for reg_layer in self.reg_convs:
reg_feat = reg_layer(reg_feat)
# predict the bbox_pred of different level
reg_feat_init = self.vfnet_reg_conv(reg_feat)
if self.bbox_norm_type == 'reg_denom':
bbox_pred = scale(
self.vfnet_reg(reg_feat_init)).float().exp() * reg_denom
elif self.bbox_norm_type == 'stride':
bbox_pred = scale(
self.vfnet_reg(reg_feat_init)).float().exp() * stride
else:
raise NotImplementedError
# compute star deformable convolution offsets
# converting dcn_offset to reg_feat.dtype thus VFNet can be
# trained with FP16
dcn_offset = self.star_dcn_offset(bbox_pred, self.gradient_mul,
stride).to(reg_feat.dtype)
# refine the bbox_pred
reg_feat = self.relu(self.vfnet_reg_refine_dconv(reg_feat, dcn_offset))
bbox_pred_refine = scale_refine(
self.vfnet_reg_refine(reg_feat)).float().exp()
bbox_pred_refine = bbox_pred_refine * bbox_pred.detach()
# predict the iou-aware cls score
cls_feat = self.relu(self.vfnet_cls_dconv(cls_feat, dcn_offset))
cls_score = self.vfnet_cls(cls_feat)
return cls_score, bbox_pred, bbox_pred_refine
def star_dcn_offset(self, bbox_pred, gradient_mul, stride):
"""Compute the star deformable conv offsets.
Args:
bbox_pred (Tensor): Predicted bbox distance offsets (l, r, t, b).
gradient_mul (float): Gradient multiplier.
stride (int): The corresponding stride for feature maps,
used to project the bbox onto the feature map.
Returns:
dcn_offsets (Tensor): The offsets for deformable convolution.
"""
dcn_base_offset = self.dcn_base_offset.type_as(bbox_pred)
bbox_pred_grad_mul = (1 - gradient_mul) * bbox_pred.detach() + \
gradient_mul * bbox_pred
# map to the feature map scale
bbox_pred_grad_mul = bbox_pred_grad_mul / stride
N, C, H, W = bbox_pred.size()
x1 = bbox_pred_grad_mul[:, 0, :, :]
y1 = bbox_pred_grad_mul[:, 1, :, :]
x2 = bbox_pred_grad_mul[:, 2, :, :]
y2 = bbox_pred_grad_mul[:, 3, :, :]
bbox_pred_grad_mul_offset = bbox_pred.new_zeros(
N, 2 * self.num_dconv_points, H, W)
bbox_pred_grad_mul_offset[:, 0, :, :] = -1.0 * y1 # -y1
bbox_pred_grad_mul_offset[:, 1, :, :] = -1.0 * x1 # -x1
bbox_pred_grad_mul_offset[:, 2, :, :] = -1.0 * y1 # -y1
bbox_pred_grad_mul_offset[:, 4, :, :] = -1.0 * y1 # -y1
bbox_pred_grad_mul_offset[:, 5, :, :] = x2 # x2
bbox_pred_grad_mul_offset[:, 7, :, :] = -1.0 * x1 # -x1
bbox_pred_grad_mul_offset[:, 11, :, :] = x2 # x2
bbox_pred_grad_mul_offset[:, 12, :, :] = y2 # y2
bbox_pred_grad_mul_offset[:, 13, :, :] = -1.0 * x1 # -x1
bbox_pred_grad_mul_offset[:, 14, :, :] = y2 # y2
bbox_pred_grad_mul_offset[:, 16, :, :] = y2 # y2
bbox_pred_grad_mul_offset[:, 17, :, :] = x2 # x2
dcn_offset = bbox_pred_grad_mul_offset - dcn_base_offset
return dcn_offset
@force_fp32(apply_to=('cls_scores', 'bbox_preds', 'bbox_preds_refine'))
def loss(self,
cls_scores,
bbox_preds,
bbox_preds_refine,
gt_bboxes,
gt_labels,
img_metas,
gt_bboxes_ignore=None):
"""Compute loss of the head.
Args:
cls_scores (list[Tensor]): Box iou-aware scores for each scale
level, each is a 4D-tensor, the channel number is
num_points * num_classes.
bbox_preds (list[Tensor]): Box offsets for each
scale level, each is a 4D-tensor, the channel number is
num_points * 4.
bbox_preds_refine (list[Tensor]): Refined Box offsets for
each scale level, each is a 4D-tensor, the channel
number is num_points * 4.
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]): class indices corresponding to each box
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
gt_bboxes_ignore (None | list[Tensor]): specify which bounding
boxes can be ignored when computing the loss.
Default: None.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
assert len(cls_scores) == len(bbox_preds) == len(bbox_preds_refine)
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
all_level_points = self.get_points(featmap_sizes, bbox_preds[0].dtype,
bbox_preds[0].device)
labels, label_weights, bbox_targets, bbox_weights = self.get_targets(
cls_scores, all_level_points, gt_bboxes, gt_labels, img_metas,
gt_bboxes_ignore)
num_imgs = cls_scores[0].size(0)
# flatten cls_scores, bbox_preds and bbox_preds_refine
flatten_cls_scores = [
cls_score.permute(0, 2, 3,
1).reshape(-1,
self.cls_out_channels).contiguous()
for cls_score in cls_scores
]
flatten_bbox_preds = [
bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4).contiguous()
for bbox_pred in bbox_preds
]
flatten_bbox_preds_refine = [
bbox_pred_refine.permute(0, 2, 3, 1).reshape(-1, 4).contiguous()
for bbox_pred_refine in bbox_preds_refine
]
flatten_cls_scores = torch.cat(flatten_cls_scores)
flatten_bbox_preds = torch.cat(flatten_bbox_preds)
flatten_bbox_preds_refine = torch.cat(flatten_bbox_preds_refine)
flatten_labels = torch.cat(labels)
flatten_bbox_targets = torch.cat(bbox_targets)
# repeat points to align with bbox_preds
flatten_points = torch.cat(
[points.repeat(num_imgs, 1) for points in all_level_points])
# FG cat_id: [0, num_classes - 1], BG cat_id: num_classes
bg_class_ind = self.num_classes
pos_inds = torch.where(
((flatten_labels >= 0) & (flatten_labels < bg_class_ind)) > 0)[0]
num_pos = len(pos_inds)
pos_bbox_preds = flatten_bbox_preds[pos_inds]
pos_bbox_preds_refine = flatten_bbox_preds_refine[pos_inds]
pos_labels = flatten_labels[pos_inds]
# sync num_pos across all gpus
if self.sync_num_pos:
num_pos_avg_per_gpu = reduce_mean(
pos_inds.new_tensor(num_pos).float()).item()
num_pos_avg_per_gpu = max(num_pos_avg_per_gpu, 1.0)
else:
num_pos_avg_per_gpu = num_pos
if num_pos > 0:
pos_bbox_targets = flatten_bbox_targets[pos_inds]
pos_points = flatten_points[pos_inds]
pos_decoded_bbox_preds = distance2bbox(pos_points, pos_bbox_preds)
pos_decoded_target_preds = distance2bbox(pos_points,
pos_bbox_targets)
iou_targets_ini = bbox_overlaps(
pos_decoded_bbox_preds,
pos_decoded_target_preds.detach(),
is_aligned=True).clamp(min=1e-6)
bbox_weights_ini = iou_targets_ini.clone().detach()
iou_targets_ini_avg_per_gpu = reduce_mean(
bbox_weights_ini.sum()).item()
bbox_avg_factor_ini = max(iou_targets_ini_avg_per_gpu, 1.0)
loss_bbox = self.loss_bbox(
pos_decoded_bbox_preds,
pos_decoded_target_preds.detach(),
weight=bbox_weights_ini,
avg_factor=bbox_avg_factor_ini)
pos_decoded_bbox_preds_refine = \
distance2bbox(pos_points, pos_bbox_preds_refine)
iou_targets_rf = bbox_overlaps(
pos_decoded_bbox_preds_refine,
pos_decoded_target_preds.detach(),
is_aligned=True).clamp(min=1e-6)
bbox_weights_rf = iou_targets_rf.clone().detach()
iou_targets_rf_avg_per_gpu = reduce_mean(
bbox_weights_rf.sum()).item()
bbox_avg_factor_rf = max(iou_targets_rf_avg_per_gpu, 1.0)
loss_bbox_refine = self.loss_bbox_refine(
pos_decoded_bbox_preds_refine,
pos_decoded_target_preds.detach(),
weight=bbox_weights_rf,
avg_factor=bbox_avg_factor_rf)
# build IoU-aware cls_score targets
if self.use_vfl:
pos_ious = iou_targets_rf.clone().detach()
cls_iou_targets = torch.zeros_like(flatten_cls_scores)
cls_iou_targets[pos_inds, pos_labels] = pos_ious
else:
loss_bbox = pos_bbox_preds.sum() * 0
loss_bbox_refine = pos_bbox_preds_refine.sum() * 0
if self.use_vfl:
cls_iou_targets = torch.zeros_like(flatten_cls_scores)
if self.use_vfl:
loss_cls = self.loss_cls(
flatten_cls_scores,
cls_iou_targets,
avg_factor=num_pos_avg_per_gpu)
else:
loss_cls = self.loss_cls(
flatten_cls_scores,
flatten_labels,
weight=label_weights,
avg_factor=num_pos_avg_per_gpu)
return dict(
loss_cls=loss_cls,
loss_bbox=loss_bbox,
loss_bbox_rf=loss_bbox_refine)
@force_fp32(apply_to=('cls_scores', 'bbox_preds', 'bbox_preds_refine'))
def get_bboxes(self,
cls_scores,
bbox_preds,
bbox_preds_refine,
img_metas,
cfg=None,
rescale=None,
with_nms=True):
"""Transform network outputs for a batch into bbox predictions.
Args:
cls_scores (list[Tensor]): Box iou-aware scores for each scale
level with shape (N, num_points * num_classes, H, W).
bbox_preds (list[Tensor]): Box offsets for each scale
level with shape (N, num_points * 4, H, W).
bbox_preds_refine (list[Tensor]): Refined Box offsets for
each scale level with shape (N, num_points * 4, H, W).
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
cfg (mmcv.Config): Test / postprocessing configuration,
if None, test_cfg would be used. Default: None.
rescale (bool): If True, return boxes in original image space.
Default: False.
with_nms (bool): If True, do nms before returning boxes.
Default: True.
Returns:
list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple.
The first item is an (n, 5) tensor, where the first 4 columns
are bounding box positions (tl_x, tl_y, br_x, br_y) and the
5-th column is a score between 0 and 1. The second item is a
(n,) tensor where each item is the predicted class label of
the corresponding box.
"""
assert len(cls_scores) == len(bbox_preds) == len(bbox_preds_refine)
num_levels = len(cls_scores)
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
mlvl_points = self.get_points(featmap_sizes, bbox_preds[0].dtype,
bbox_preds[0].device)
result_list = []
for img_id in range(len(img_metas)):
cls_score_list = [
cls_scores[i][img_id].detach() for i in range(num_levels)
]
bbox_pred_list = [
bbox_preds_refine[i][img_id].detach()
for i in range(num_levels)
]
img_shape = img_metas[img_id]['img_shape']
scale_factor = img_metas[img_id]['scale_factor']
det_bboxes = self._get_bboxes_single(cls_score_list,
bbox_pred_list, mlvl_points,
img_shape, scale_factor, cfg,
rescale, with_nms)
result_list.append(det_bboxes)
return result_list
def _get_bboxes_single(self,
cls_scores,
bbox_preds,
mlvl_points,
img_shape,
scale_factor,
cfg,
rescale=False,
with_nms=True):
"""Transform outputs for a single batch item into bbox predictions.
Args:
cls_scores (list[Tensor]): Box iou-aware scores for a single scale
level with shape (num_points * num_classes, H, W).
bbox_preds (list[Tensor]): Box offsets for a single scale
level with shape (num_points * 4, H, W).
mlvl_points (list[Tensor]): Box reference for a single scale level
with shape (num_total_points, 4).
img_shape (tuple[int]): Shape of the input image,
(height, width, 3).
scale_factor (ndarray): Scale factor of the image arrange as
(w_scale, h_scale, w_scale, h_scale).
cfg (mmcv.Config | None): Test / postprocessing configuration,
if None, test_cfg would be used.
rescale (bool): If True, return boxes in original image space.
Default: False.
with_nms (bool): If True, do nms before returning boxes.
Default: True.
Returns:
tuple(Tensor):
det_bboxes (Tensor): BBox predictions in shape (n, 5), where
the first 4 columns are bounding box positions
(tl_x, tl_y, br_x, br_y) and the 5-th column is a score
between 0 and 1.
det_labels (Tensor): A (n,) tensor where each item is the
predicted class label of the corresponding box.
"""
cfg = self.test_cfg if cfg is None else cfg
assert len(cls_scores) == len(bbox_preds) == len(mlvl_points)
mlvl_bboxes = []
mlvl_scores = []
for cls_score, bbox_pred, points in zip(cls_scores, bbox_preds,
mlvl_points):
assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
scores = cls_score.permute(1, 2, 0).reshape(
-1, self.cls_out_channels).contiguous().sigmoid()
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4).contiguous()
nms_pre = cfg.get('nms_pre', -1)
if 0 < nms_pre < scores.shape[0]:
max_scores, _ = scores.max(dim=1)
_, topk_inds = max_scores.topk(nms_pre)
points = points[topk_inds, :]
bbox_pred = bbox_pred[topk_inds, :]
scores = scores[topk_inds, :]
bboxes = distance2bbox(points, bbox_pred, max_shape=img_shape)
mlvl_bboxes.append(bboxes)
mlvl_scores.append(scores)
mlvl_bboxes = torch.cat(mlvl_bboxes)
if rescale:
mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor)
mlvl_scores = torch.cat(mlvl_scores)
padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1)
# remind that we set FG labels to [0, num_class-1] since mmdet v2.0
# BG cat_id: num_class
mlvl_scores = torch.cat([mlvl_scores, padding], dim=1)
if with_nms:
det_bboxes, det_labels = multiclass_nms(mlvl_bboxes, mlvl_scores,
cfg.score_thr, cfg.nms,
cfg.max_per_img)
return det_bboxes, det_labels
else:
return mlvl_bboxes, mlvl_scores
def _get_points_single(self,
featmap_size,
stride,
dtype,
device,
flatten=False):
"""Get points according to feature map sizes."""
h, w = featmap_size
x_range = torch.arange(
0, w * stride, stride, dtype=dtype, device=device)
y_range = torch.arange(
0, h * stride, stride, dtype=dtype, device=device)
y, x = torch.meshgrid(y_range, x_range)
# to be compatible with anchor points in ATSS
if self.use_atss:
points = torch.stack(
(x.reshape(-1), y.reshape(-1)), dim=-1) + \
stride * self.anchor_center_offset
else:
points = torch.stack(
(x.reshape(-1), y.reshape(-1)), dim=-1) + stride // 2
return points
def get_targets(self, cls_scores, mlvl_points, gt_bboxes, gt_labels,
img_metas, gt_bboxes_ignore):
"""A wrapper for computing ATSS and FCOS targets for points in multiple
images.
Args:
cls_scores (list[Tensor]): Box iou-aware scores for each scale
level with shape (N, num_points * num_classes, H, W).
mlvl_points (list[Tensor]): Points of each fpn level, each has
shape (num_points, 2).
gt_bboxes (list[Tensor]): Ground truth bboxes of each image,
each has shape (num_gt, 4).
gt_labels (list[Tensor]): Ground truth labels of each box,
each has shape (num_gt,).
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
gt_bboxes_ignore (None | Tensor): Ground truth bboxes to be
ignored, shape (num_ignored_gts, 4).
Returns:
tuple:
labels_list (list[Tensor]): Labels of each level.
label_weights (Tensor/None): Label weights of all levels.
bbox_targets_list (list[Tensor]): Regression targets of each
level, (l, t, r, b).
bbox_weights (Tensor/None): Bbox weights of all levels.
"""
if self.use_atss:
return self.get_atss_targets(cls_scores, mlvl_points, gt_bboxes,
gt_labels, img_metas,
gt_bboxes_ignore)
else:
self.norm_on_bbox = False
return self.get_fcos_targets(mlvl_points, gt_bboxes, gt_labels)
def _get_target_single(self, *args, **kwargs):
"""Avoid ambiguity in multiple inheritance."""
if self.use_atss:
return ATSSHead._get_target_single(self, *args, **kwargs)
else:
return FCOSHead._get_target_single(self, *args, **kwargs)
def get_fcos_targets(self, points, gt_bboxes_list, gt_labels_list):
"""Compute FCOS regression and classification targets for points in
multiple images.
Args:
points (list[Tensor]): Points of each fpn level, each has shape
(num_points, 2).
gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image,
each has shape (num_gt, 4).
gt_labels_list (list[Tensor]): Ground truth labels of each box,
each has shape (num_gt,).
Returns:
tuple:
labels (list[Tensor]): Labels of each level.
label_weights: None, to be compatible with ATSS targets.
bbox_targets (list[Tensor]): BBox targets of each level.
bbox_weights: None, to be compatible with ATSS targets.
"""
labels, bbox_targets = FCOSHead.get_targets(self, points,
gt_bboxes_list,
gt_labels_list)
label_weights = None
bbox_weights = None
return labels, label_weights, bbox_targets, bbox_weights
def get_atss_targets(self,
cls_scores,
mlvl_points,
gt_bboxes,
gt_labels,
img_metas,
gt_bboxes_ignore=None):
"""A wrapper for computing ATSS targets for points in multiple images.
Args:
cls_scores (list[Tensor]): Box iou-aware scores for each scale
level with shape (N, num_points * num_classes, H, W).
mlvl_points (list[Tensor]): Points of each fpn level, each has
shape (num_points, 2).
gt_bboxes (list[Tensor]): Ground truth bboxes of each image,
each has shape (num_gt, 4).
gt_labels (list[Tensor]): Ground truth labels of each box,
each has shape (num_gt,).
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
gt_bboxes_ignore (None | Tensor): Ground truth bboxes to be
ignored, shape (num_ignored_gts, 4). Default: None.
Returns:
tuple:
labels_list (list[Tensor]): Labels of each level.
label_weights (Tensor): Label weights of all levels.
bbox_targets_list (list[Tensor]): Regression targets of each
level, (l, t, r, b).
bbox_weights (Tensor): Bbox weights of all levels.
"""
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
assert len(featmap_sizes) == self.anchor_generator.num_levels
device = cls_scores[0].device
anchor_list, valid_flag_list = self.get_anchors(
featmap_sizes, img_metas, device=device)
label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1
cls_reg_targets = ATSSHead.get_targets(
self,
anchor_list,
valid_flag_list,
gt_bboxes,
img_metas,
gt_bboxes_ignore_list=gt_bboxes_ignore,
gt_labels_list=gt_labels,
label_channels=label_channels,
unmap_outputs=True)
if cls_reg_targets is None:
return None
(anchor_list, labels_list, label_weights_list, bbox_targets_list,
bbox_weights_list, num_total_pos, num_total_neg) = cls_reg_targets
bbox_targets_list = [
bbox_targets.reshape(-1, 4) for bbox_targets in bbox_targets_list
]
num_imgs = len(img_metas)
# transform bbox_targets (x1, y1, x2, y2) into (l, t, r, b) format
bbox_targets_list = self.transform_bbox_targets(
bbox_targets_list, mlvl_points, num_imgs)
labels_list = [labels.reshape(-1) for labels in labels_list]
label_weights_list = [
label_weights.reshape(-1) for label_weights in label_weights_list
]
bbox_weights_list = [
bbox_weights.reshape(-1) for bbox_weights in bbox_weights_list
]
label_weights = torch.cat(label_weights_list)
bbox_weights = torch.cat(bbox_weights_list)
return labels_list, label_weights, bbox_targets_list, bbox_weights
def transform_bbox_targets(self, decoded_bboxes, mlvl_points, num_imgs):
"""Transform bbox_targets (x1, y1, x2, y2) into (l, t, r, b) format.
Args:
decoded_bboxes (list[Tensor]): Regression targets of each level,
in the form of (x1, y1, x2, y2).
mlvl_points (list[Tensor]): Points of each fpn level, each has
shape (num_points, 2).
num_imgs (int): the number of images in a batch.
Returns:
bbox_targets (list[Tensor]): Regression targets of each level in
the form of (l, t, r, b).
"""
# TODO: Re-implemented in Class PointCoder
assert len(decoded_bboxes) == len(mlvl_points)
num_levels = len(decoded_bboxes)
mlvl_points = [points.repeat(num_imgs, 1) for points in mlvl_points]
bbox_targets = []
for i in range(num_levels):
bbox_target = bbox2distance(mlvl_points[i], decoded_bboxes[i])
bbox_targets.append(bbox_target)
return bbox_targets
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs):
"""Override the method in the parent class to avoid changing para's
name."""
pass