Contributing
The main contributer Hyrodium is not native English speaker. So, English corrections would be really helpful. Of course, other code improvement are welcomed!
Feel free to open issues and pull requests!
diff --git a/previews/PR342/.documenter-siteinfo.json b/previews/PR342/.documenter-siteinfo.json index 388323c69..8d876ee9d 100644 --- a/previews/PR342/.documenter-siteinfo.json +++ b/previews/PR342/.documenter-siteinfo.json @@ -1 +1 @@ -{"documenter":{"julia_version":"1.9.3","generation_timestamp":"2023-11-11T09:00:55","documenter_version":"1.1.2"}} \ No newline at end of file +{"documenter":{"julia_version":"1.9.3","generation_timestamp":"2023-11-11T10:53:57","documenter_version":"1.1.2"}} \ No newline at end of file diff --git a/previews/PR342/1dim-manifold.html b/previews/PR342/1dim-manifold.html index ba1841fe5..8d08a3cfc 100644 --- a/previews/PR342/1dim-manifold.html +++ b/previews/PR342/1dim-manifold.html @@ -1,7 +1,7 @@ -
+ + + + + + + + +The main contributer Hyrodium is not native English speaker. So, English corrections would be really helpful. Of course, other code improvement are welcomed!
Feel free to open issues and pull requests!
Settings
This document was generated with Documenter.jl version 1.1.2 on Saturday 11 November 2023. Using Julia version 1.9.3.
The main contributer Hyrodium is not native English speaker. So, English corrections would be really helpful. Of course, other code improvement are welcomed!
Feel free to open issues and pull requests!
Settings
This document was generated with Documenter.jl version 1.1.2 on Saturday 11 November 2023. Using Julia version 1.9.3.
Note that the following methods are considered private methods, and changes in their behavior are not considered breaking changes.
BasicBSpline.r_nomial
— FunctionCalculate $r$-nomial coefficient
r_nomial(n, k, r)
\[(1+x+\cdots+x^r)^n = \sum_{k} a_{n,k,r} x^k\]
BasicBSpline._vec
— FunctionConvert AbstractKnotVector
to AbstractVector
BasicBSpline._lower_R
— FunctionInternal methods for obtaining a B-spline space with one degree lower.
\[\begin{aligned} +
Note that the following methods are considered private methods, and changes in their behavior are not considered breaking changes.
BasicBSpline.r_nomial
— FunctionCalculate $r$-nomial coefficient
r_nomial(n, k, r)
\[(1+x+\cdots+x^r)^n = \sum_{k} a_{n,k,r} x^k\]
BasicBSpline._vec
— FunctionConvert AbstractKnotVector
to AbstractVector
BasicBSpline._lower_R
— FunctionInternal methods for obtaining a B-spline space with one degree lower.
\[\begin{aligned} \mathcal{P}[p,k] &\mapsto \mathcal{P}[p-1,k] \\ D^r\mathcal{P}[p,k] &\mapsto D^{r-1}\mathcal{P}[p-1,k] -\end{aligned}\]
BasicBSpline._changebasis_sim
— FunctionReturn a coefficient matrix $A$ which satisfy
\[B_{(i,p_1,k_1)} = \sum_{j}A_{i,j}B_{(j,p_2,k_2)}\]
Assumption:
BasicBSplineFitting.innerproduct_R
— FunctionCalculate a matrix
\[A_{ij}=\int_{\mathbb{R}} B_{(i,p,k)}(t) B_{(j,p,k)}(t) dt\]
BasicBSplineFitting.innerproduct_I
— FunctionCalculate a matrix
\[A_{ij}=\int_{I} B_{(i,p,k)}(t) B_{(j,p,k)}(t) dt\]
Settings
This document was generated with Documenter.jl version 1.1.2 on Saturday 11 November 2023. Using Julia version 1.9.3.
BasicBSpline._changebasis_sim
— FunctionReturn a coefficient matrix $A$ which satisfy
\[B_{(i,p_1,k_1)} = \sum_{j}A_{i,j}B_{(j,p_2,k_2)}\]
Assumption:
BasicBSplineFitting.innerproduct_R
— FunctionCalculate a matrix
\[A_{ij}=\int_{\mathbb{R}} B_{(i,p,k)}(t) B_{(j,p,k)}(t) dt\]
BasicBSplineFitting.innerproduct_I
— FunctionCalculate a matrix
\[A_{ij}=\int_{I} B_{(i,p,k)}(t) B_{(j,p,k)}(t) dt\]
Settings
This document was generated with Documenter.jl version 1.1.2 on Saturday 11 November 2023. Using Julia version 1.9.3.