From bc959c93e5e1b63c282ccfb9d762d8f58ed821f3 Mon Sep 17 00:00:00 2001 From: "Documenter.jl" Date: Sat, 16 Dec 2023 17:43:58 +0000 Subject: [PATCH] build based on 42c6628 --- previews/PR357/.documenter-siteinfo.json | 2 +- previews/PR357/1dim-manifold.html | 4 +- previews/PR357/2dim-manifold-currying.html | 4 +- previews/PR357/2dim-manifold.html | 4 +- previews/PR357/api/index.html | 4 +- .../PR357/basicbsplineexporter/index.html | 2 +- previews/PR357/bsplinebasisall-1.html | 4 +- previews/PR357/bsplinebasisall-2.html | 4 +- previews/PR357/bsplinebasisall-3.html | 4 +- .../PR357/bsplinebasisderivativeplot.html | 4 +- previews/PR357/bsplinebasisplot.html | 4 +- previews/PR357/bsplinebasisplot2.html | 4 +- previews/PR357/cardioid.html | 6 +-- previews/PR357/contributing/index.html | 2 +- previews/PR357/geometricmodeling-arc.html | 4 +- previews/PR357/geometricmodeling-circle.html | 4 +- ...eometricmodeling-hyperbolicparaboloid.html | 4 +- .../PR357/geometricmodeling-paraboloid.html | 4 +- previews/PR357/geometricmodeling-torus.html | 4 +- previews/PR357/geometricmodeling/index.html | 2 +- previews/PR357/helix.html | 6 +-- previews/PR357/histogram-uniform.html | 4 +- previews/PR357/index.html | 2 +- previews/PR357/interpolation_cubic.html | 4 +- previews/PR357/interpolation_linear.html | 4 +- previews/PR357/interpolation_periodic.html | 4 +- .../PR357/interpolation_periodic_sin.html | 4 +- previews/PR357/interpolations/index.html | 2 +- previews/PR357/math-bsplinebasis/index.html | 38 +++++++++---------- .../PR357/math-bsplinemanifold/index.html | 6 +-- previews/PR357/math-bsplinespace/index.html | 12 +++--- previews/PR357/math-derivative/index.html | 10 ++--- previews/PR357/math-fitting/index.html | 2 +- previews/PR357/math-inclusive/index.html | 12 +++--- previews/PR357/math-knotvector/index.html | 22 +++++------ .../math-rationalbsplinemanifold/index.html | 2 +- previews/PR357/math-refinement/index.html | 4 +- previews/PR357/math/index.html | 2 +- previews/PR357/plotlyjs/index.html | 2 +- previews/PR357/plots-arc.html | 4 +- previews/PR357/plots-bsplinebasis-raw.html | 4 +- previews/PR357/plots-bsplinebasis.html | 4 +- .../PR357/plots-bsplinebasisderivative.html | 4 +- previews/PR357/plots-cardioid.html | 4 +- previews/PR357/plots-helix.html | 4 +- previews/PR357/plots-surface.html | 4 +- previews/PR357/plots/index.html | 2 +- previews/PR357/subbsplineplot.html | 4 +- previews/PR357/subbsplineplot2.html | 4 +- previews/PR357/sumofbsplineplot.html | 4 +- previews/PR357/sumofbsplineplot2.html | 4 +- previews/PR357/sumofbsplineplot3.html | 4 +- 52 files changed, 133 insertions(+), 133 deletions(-) diff --git a/previews/PR357/.documenter-siteinfo.json b/previews/PR357/.documenter-siteinfo.json index f8586e8c..3407fcf5 100644 --- a/previews/PR357/.documenter-siteinfo.json +++ b/previews/PR357/.documenter-siteinfo.json @@ -1 +1 @@ -{"documenter":{"julia_version":"1.9.4","generation_timestamp":"2023-12-16T16:36:21","documenter_version":"1.2.1"}} \ No newline at end of file +{"documenter":{"julia_version":"1.9.4","generation_timestamp":"2023-12-16T17:43:27","documenter_version":"1.2.1"}} \ No newline at end of file diff --git a/previews/PR357/1dim-manifold.html b/previews/PR357/1dim-manifold.html index 148b6824..9d065275 100644 --- a/previews/PR357/1dim-manifold.html +++ b/previews/PR357/1dim-manifold.html @@ -1,7 +1,7 @@ -
+
+
+

Private API

Note that the following methods are considered private methods, and changes in their behavior are not considered breaking changes.

BasicBSpline.r_nomialFunction

Calculate $r$-nomial coefficient

r_nomial(n, k, r)

\[(1+x+\cdots+x^r)^n = \sum_{k} a_{n,k,r} x^k\]

source
BasicBSpline._lower_RFunction

Internal methods for obtaining a B-spline space with one degree lower.

\[\begin{aligned} +API · BasicBSpline.jl

Private API

Note that the following methods are considered private methods, and changes in their behavior are not considered breaking changes.

BasicBSpline.r_nomialFunction

Calculate $r$-nomial coefficient

r_nomial(n, k, r)

\[(1+x+\cdots+x^r)^n = \sum_{k} a_{n,k,r} x^k\]

source
BasicBSpline._lower_RFunction

Internal methods for obtaining a B-spline space with one degree lower.

\[\begin{aligned} \mathcal{P}[p,k] &\mapsto \mathcal{P}[p-1,k] \\ D^r\mathcal{P}[p,k] &\mapsto D^{r-1}\mathcal{P}[p-1,k] -\end{aligned}\]

source
BasicBSpline.__changebasis_IFunction
__changebasis_I(P::AbstractFunctionSpace, P′::AbstractFunctionSpace)

Internal function for changebasis_I.

Implicit assumption:

  • P ⊑ P′
  • isnondegenerate_I(P′, 1)
  • isnondegenerate_I(P′, dim(P′))
source
+\end{aligned}\]

source
BasicBSpline.__changebasis_IFunction
__changebasis_I(P::AbstractFunctionSpace, P′::AbstractFunctionSpace)

Internal function for changebasis_I.

Implicit assumption:

  • P ⊑ P′
  • isnondegenerate_I(P′, 1)
  • isnondegenerate_I(P′, dim(P′))
source
diff --git a/previews/PR357/basicbsplineexporter/index.html b/previews/PR357/basicbsplineexporter/index.html index f26b6709..b9c28d39 100644 --- a/previews/PR357/basicbsplineexporter/index.html +++ b/previews/PR357/basicbsplineexporter/index.html @@ -12,4 +12,4 @@ n2 = dim(P2) a = [SVector(2i-6.5+rand(),1.5j-6.5+rand()) for i in 1:dim(P1), j in 1:dim(P2)] # random generated control points M = BSplineManifold(a,(P1,P2)) # Define B-spline manifold -save_png("BasicBSplineExporter_2dim.png", M) # save image

Other examples

Here are some images rendared with POV-Ray.

See BasicBSplineExporter.jl/test for more examples.

+save_png("BasicBSplineExporter_2dim.png", M) # save image

Other examples

Here are some images rendared with POV-Ray.

See BasicBSplineExporter.jl/test for more examples.

diff --git a/previews/PR357/bsplinebasisall-1.html b/previews/PR357/bsplinebasisall-1.html index 6b47d5db..be38714e 100644 --- a/previews/PR357/bsplinebasisall-1.html +++ b/previews/PR357/bsplinebasisall-1.html @@ -1,7 +1,7 @@ -
+
+
+
+
+
+
@@ -17,9 +17,9 @@ window.PLOTLYENV = window.PLOTLYENV || {} - if (document.getElementById('abef438b-355c-441f-bd56-1d71144196d1')) { + if (document.getElementById('c6ba623c-d035-4bbd-85b5-524ccccb9d77')) { Plotly.newPlot( - 'abef438b-355c-441f-bd56-1d71144196d1', + 'c6ba623c-d035-4bbd-85b5-524ccccb9d77', [{"x":[1.9997590015180606,2.0015083833616005,1.788116686260898,1.0176731052593306,0.21435955333452675,-0.2458642610591032,-0.27200580243640343,-0.07533894204442518,0.0012247388041782513,-0.00020885889244785273,0.0012247388041781576,-0.075338942044425,-0.2720058024364032,-0.24586426105910397,0.21435955333452728,1.0176731052593284,1.7881166862609021,2.001508383361603,1.999759001518059],"line":{"color":"blue"},"y":[0.0002586481204077243,0.298835181285283,0.8960860814400415,1.3666845344070293,1.2565473946695775,0.7599969118455053,0.25042953769780585,0.0014193036958728518,0.00018118879311651538,-1.5460722979643293e-16,-0.0001811887931159892,-0.0014193036958728752,-0.250429537697806,-0.7599969118455054,-1.2565473946695773,-1.366684534407029,-0.8960860814400418,-0.29883518128528336,-0.00025864812040743423],"type":"scatter","name":"control points","marker":{"size":8}},{"mode":"lines","line":{"color":"red"},"y":[0.0002586481204077243,0.0506088119642714,0.10088426242113398,0.15100935827558676,0.20090845831222098,0.25050592131562777,0.29972610607039857,0.34849337136112435,0.3967320759723966,0.4443665786888064,0.4913212382949451,0.5375204135754041,0.5828884633147743,0.6273497462976467,0.6708286213086134,0.7132494471322651,0.7545365825531931,0.7946143863559887,0.8334072960590209,0.870853760877023,0.9069222684189555,0.9415851875774113,0.9748148872449842,1.0065837363142676,1.0368641036778556,1.065628358228342,1.0928488688583193,1.1184980044603823,1.1425481339271242,1.1649716261511383,1.185740850025019,1.204828174441359,1.2222059682927522,1.237846600471793,1.2517224398710738,1.2638058553831892,1.2740700315423261,1.28251509926422,1.2891736640836262,1.2940802649079637,1.297269440644654,1.2987757302011183,1.2986336724847773,1.2968778064030515,1.2935426708633622,1.28866280477313,1.2822727470397761,1.2744070365707212,1.2651002122733859,1.2543868130551914,1.242301377823558,1.2288784454859074,1.2141525549496601,1.1981582451222372,1.1809314642364017,1.162526044844182,1.1430081129130436,1.1224440360643169,1.100900181919332,1.07844291809942,1.0551386122259105,1.031053631920135,1.006254344803423,0.980807118497106,0.9547783206225139,0.9282343188009771,0.901241480653826,0.8738661738023918,0.8461747658680041,0.8182336244719938,0.7901091172356912,0.7618676117804273,0.7335736135437411,0.7052801358752425,0.6770358125441437,0.6488892686984362,0.6208891294861111,0.5930840200551603,0.5655225655535743,0.5382533911293448,0.5113251219304636,0.48478638310492134,0.4586857998007095,0.43307199716582007,0.4079936003482433,0.3834992344959712,0.3596375247569953,0.33645709627930614,0.31400657421089573,0.29233458060162654,0.2714792937089254,0.2514451376761356,0.23222973005746234,0.21383068840711184,0.19624563027929037,0.17947217322820316,0.16350793480805637,0.14835053257305617,0.133997584077408,0.12044670687531794,0.10769551852099218,0.09574163656863609,0.08458267857245584,0.07421626208665746,0.06464000466544652,0.05585152386302924,0.04784843723361115,0.04062820264367132,0.03417436516646733,0.028445957809150803,0.023399518458138095,0.018991584999845542,0.015178695320689264,0.011917387307085612,0.009164198845450899,0.006875667822201287,0.005008332123753105,0.0035187296365226392,0.0023633982469261038,0.0014988758413798085,0.0008817003062999908,0.0004684095281029352,0.00021554139320491188,7.963378802217929e-5,1.7224598971010062e-5,-1.7224598971251426e-5,-7.963378802230008e-5,-0.0002155413932049312,-0.0004684095281028708,-0.0008817003062998594,-0.001498875841379625,-0.002363398246925882,-0.003518729636522392,-0.005008332123752844,-0.006875667822201022,-0.009164198845450637,-0.011917387307085362,-0.015178695320689033,-0.01899158499984533,-0.023399518458137907,-0.028445957809150647,-0.03417436516646721,-0.04062820264367122,-0.04784843723361108,-0.05585152386302919,-0.0646400046654465,-0.07421626208665746,-0.08458267857245585,-0.09574163656863614,-0.10769551852099224,-0.12044670687531803,-0.13399758407740808,-0.14835053257305625,-0.16350793480805645,-0.17947217322820325,-0.19624563027929048,-0.21383068840711195,-0.23222973005746245,-0.25144513767613574,-0.27147929370892554,-0.2923345806016263,-0.3140065742108962,-0.3364570962793063,-0.359637524756995,-0.3834992344959718,-0.40799360034824345,-0.43307199716581973,-0.45868579980071006,-0.4847863831049214,-0.5113251219304633,-0.5382533911293453,-0.5655225655535744,-0.59308402005516,-0.6208891294861117,-0.6488892686984364,-0.6770358125441436,-0.7052801358752432,-0.7335736135437416,-0.7618676117804273,-0.7901091172356918,-0.8182336244719941,-0.8461747658680041,-0.8738661738023913,-0.9012414806538264,-0.928234318800977,-0.9547783206225133,-0.9808071184971062,-1.0062543448034231,-1.0310536319201347,-1.0551386122259108,-1.0784429180994197,-1.1009001819193318,-1.122444036064317,-1.1430081129130434,-1.1625260448441816,-1.1809314642364015,-1.1981582451222372,-1.2141525549496601,-1.2288784454859076,-1.242301377823558,-1.254386813055191,-1.2651002122733856,-1.2744070365707207,-1.2822727470397757,-1.28866280477313,-1.293542670863362,-1.296877806403051,-1.298633672484777,-1.298775730201118,-1.2972694406446539,-1.2940802649079635,-1.2891736640836258,-1.2825150992642205,-1.2740700315423263,-1.2638058553831888,-1.2517224398710736,-1.2378466004717927,-1.222205968292752,-1.2048281744413587,-1.185740850025019,-1.164971626151138,-1.142548133927124,-1.1184980044603827,-1.0928488688583191,-1.065628358228342,-1.036864103677856,-1.0065837363142676,-0.9748148872449842,-0.9415851875774116,-0.9069222684189551,-0.8708537608770233,-0.833407296059021,-0.7946143863559884,-0.7545365825531931,-0.7132494471322657,-0.6708286213086129,-0.6273497462976471,-0.5828884633147746,-0.537520413575405,-0.491321238294945,-0.44436657868880675,-0.3967320759723975,-0.34849337136112407,-0.29972610607039873,-0.2505059213156285,-0.20090845831222048,-0.15100935827558679,-0.10088426242113453,-0.05060881196427064,-0.00025864812040743423],"type":"scatter","name":"B-spline curve","x":[1.9997590015180606,1.9990315480100591,1.9962827706568047,1.991548273581031,1.9848636609054748,1.976264536752867,1.9657865052459458,1.9534651705074433,1.9393361366600959,1.9234350078266365,1.9057973881298012,1.8864588816923238,1.865455092636939,1.8428216250863811,1.8185940831633858,1.7928080709906866,1.7654991926910186,1.7367030523871163,1.7064553175034671,1.6748029208321227,1.6418169459562448,1.6075715970009754,1.572141078091458,1.5355995933528355,1.4980213469102523,1.459480542888851,1.4200513854137742,1.379808078610166,1.3388248266031693,1.2971758335179269,1.2549353034795832,1.2121774406132804,1.1689764490441616,1.125406532897371,1.0815418962980512,1.0374567433713457,0.9932251814083058,0.9489181185885192,0.9046026076601554,0.8603454718387227,0.8162135343397291,0.7722736183786831,0.7285925471710937,0.6852371439324688,0.642274231878316,0.5997706342241452,0.5577931741854639,0.5164086749777806,0.4756839598166033,0.435685851917441,0.39648117449580195,0.35813675076719387,0.32071940394712595,0.2842959572511064,0.2489309911848958,0.21466062629832425,0.18150142019021534,0.1494695459069662,0.118581176494974,0.0888524850006366,0.06029964447035108,0.0329388279505149,0.00678620848752511,-0.018142040872220346,-0.04182974708232444,-0.06426073709638994,-0.08541883786801896,-0.10528787635081453,-0.12385167949837908,-0.14109407426431553,-0.1569988876022261,-0.1715499464657136,-0.1847367165777217,-0.19658346217754316,-0.2071277090545875,-0.216407009103678,-0.22445891421963787,-0.23132097629729018,-0.23703074723145803,-0.2416257789169648,-0.24514362324863345,-0.2476218321212873,-0.24909795742974947,-0.2496095510688431,-0.24919416493339142,-0.24788935091821754,-0.24573266091814466,-0.24276164682799592,-0.23901386054259455,-0.23452685496460546,-0.22934158043117098,-0.2235099677151011,-0.21708616181748963,-0.21012430773943097,-0.2026785504820195,-0.19480303504634905,-0.18655190643351405,-0.1779793096446087,-0.16913938968072717,-0.16008629154296364,-0.1508741602324125,-0.1415571407501677,-0.13218937809732348,-0.12282501727497434,-0.11351820328421411,-0.10432308112613732,-0.0952937958018378,-0.0864843899460851,-0.07793998752758796,-0.06968999928417612,-0.06176223647985256,-0.05418451037862023,-0.04698463224448168,-0.04019041334143988,-0.03382966493349771,-0.027930198284657808,-0.022519824658923097,-0.01762635532029646,-0.013277601532780547,-0.00950137456037833,-0.006325485667092496,-0.00377774611692593,-0.0018859671738814775,-0.0006779601019618868,-0.0001815361651700154,-0.00018153616517002275,-0.0006779601019619056,-0.001885967173881504,-0.0037777461169259613,-0.006325485667092528,-0.009501374560378362,-0.01327760153278057,-0.017626355320296477,-0.022519824658923104,-0.02793019828465781,-0.033829664933497705,-0.04019041334143984,-0.04698463224448164,-0.05418451037862018,-0.06176223647985249,-0.06968999928417602,-0.07793998752758785,-0.08648438994608498,-0.0952937958018377,-0.10432308112613718,-0.11351820328421397,-0.12282501727497419,-0.13218937809732334,-0.1415571407501675,-0.15087416023241237,-0.16008629154296347,-0.16913938968072703,-0.17797930964460854,-0.18655190643351385,-0.19480303504634888,-0.20267855048201935,-0.21012430773943086,-0.21708616181748952,-0.22350996771510098,-0.22934158043117095,-0.23452685496460526,-0.2390138605425946,-0.24276164682799592,-0.24573266091814466,-0.24788935091821762,-0.24919416493339155,-0.24960955106884325,-0.24909795742974963,-0.24762183212128752,-0.24514362324863373,-0.24162577891696502,-0.2370307472314584,-0.23132097629729054,-0.2244589142196381,-0.21640700910367838,-0.20712770905458797,-0.19658346217754338,-0.18473671657772206,-0.17154994646571417,-0.1569988876022262,-0.14109407426431575,-0.12385167949837961,-0.10528787635081517,-0.0854188378680191,-0.0642607370963902,-0.04182974708232509,-0.01814204087222036,0.00678620848752496,0.03293882795051428,0.06029964447035123,0.0888524850006365,0.11858117649497368,0.14946954590696646,0.18150142019021526,0.21466062629832386,0.24893099118489603,0.28429595725110623,0.32071940394712545,0.35813675076719426,0.39648117449580156,0.43568585191744025,0.4756839598166035,0.5164086749777801,0.5577931741854628,0.5997706342241453,0.6422742318783159,0.6852371439324674,0.7285925471710936,0.7722736183786826,0.8162135343397279,0.8603454718387209,0.904602607660155,0.9489181185885185,0.9932251814083046,1.0374567433713453,1.0815418962980503,1.1254065328973701,1.1689764490441619,1.2121774406132801,1.254935303479583,1.297175833517928,1.33882482660317,1.3798080786101665,1.4200513854137762,1.4594805428888522,1.498021346910254,1.5355995933528386,1.5721410780914606,1.6075715970009772,1.6418169459562477,1.674802920832126,1.7064553175034691,1.7367030523871192,1.7654991926910215,1.7928080709906897,1.8185940831633896,1.842821625086385,1.8654550926369415,1.8864588816923262,1.9057973881298043,1.9234350078266387,1.9393361366600979,1.9534651705074455,1.9657865052459467,1.976264536752868,1.9848636609054746,1.9915482735810315,1.9962827706568045,1.9990315480100584,1.999759001518059]}], {"template":{"layout":{"coloraxis":{"colorbar":{"ticks":"","outlinewidth":0}},"xaxis":{"gridcolor":"white","zerolinewidth":2,"title":{"standoff":15},"ticks":"","zerolinecolor":"white","automargin":true,"linecolor":"white"},"hovermode":"closest","paper_bgcolor":"white","geo":{"showlakes":true,"showland":true,"landcolor":"#E5ECF6","bgcolor":"white","subunitcolor":"white","lakecolor":"white"},"colorscale":{"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]},"yaxis":{"gridcolor":"white","zerolinewidth":2,"title":{"standoff":15},"ticks":"","zerolinecolor":"white","automargin":true,"linecolor":"white"},"shapedefaults":{"line":{"color":"#2a3f5f"}},"hoverlabel":{"align":"left"},"mapbox":{"style":"light"},"polar":{"angularaxis":{"gridcolor":"white","ticks":"","linecolor":"white"},"bgcolor":"#E5ECF6","radialaxis":{"gridcolor":"white","ticks":"","linecolor":"white"}},"autotypenumbers":"strict","font":{"color":"#2a3f5f"},"ternary":{"baxis":{"gridcolor":"white","ticks":"","linecolor":"white"},"bgcolor":"#E5ECF6","caxis":{"gridcolor":"white","ticks":"","linecolor":"white"},"aaxis":{"gridcolor":"white","ticks":"","linecolor":"white"}},"annotationdefaults":{"arrowhead":0,"arrowwidth":1,"arrowcolor":"#2a3f5f"},"plot_bgcolor":"#E5ECF6","title":{"x":0.05},"scene":{"xaxis":{"gridcolor":"white","gridwidth":2,"backgroundcolor":"#E5ECF6","ticks":"","showbackground":true,"zerolinecolor":"white","linecolor":"white"},"zaxis":{"gridcolor":"white","gridwidth":2,"backgroundcolor":"#E5ECF6","ticks":"","showbackground":true,"zerolinecolor":"white","linecolor":"white"},"yaxis":{"gridcolor":"white","gridwidth":2,"backgroundcolor":"#E5ECF6","ticks":"","showbackground":true,"zerolinecolor":"white","linecolor":"white"}},"colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"]},"data":{"barpolar":[{"type":"barpolar","marker":{"line":{"color":"#E5ECF6","width":0.5}}}],"carpet":[{"aaxis":{"gridcolor":"white","endlinecolor":"#2a3f5f","minorgridcolor":"white","startlinecolor":"#2a3f5f","linecolor":"white"},"type":"carpet","baxis":{"gridcolor":"white","endlinecolor":"#2a3f5f","minorgridcolor":"white","startlinecolor":"#2a3f5f","linecolor":"white"}}],"scatterpolar":[{"type":"scatterpolar","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"parcoords":[{"line":{"colorbar":{"ticks":"","outlinewidth":0}},"type":"parcoords"}],"scatter":[{"type":"scatter","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"histogram2dcontour":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"histogram2dcontour","colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"contour":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"contour","colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"scattercarpet":[{"type":"scattercarpet","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"mesh3d":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"mesh3d"}],"surface":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"surface","colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"scattermapbox":[{"type":"scattermapbox","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"scattergeo":[{"type":"scattergeo","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"histogram":[{"type":"histogram","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"pie":[{"type":"pie","automargin":true}],"choropleth":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"choropleth"}],"heatmapgl":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"heatmapgl","colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"bar":[{"type":"bar","error_y":{"color":"#2a3f5f"},"error_x":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5}}}],"heatmap":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"heatmap","colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"contourcarpet":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"contourcarpet"}],"table":[{"type":"table","header":{"line":{"color":"white"},"fill":{"color":"#C8D4E3"}},"cells":{"line":{"color":"white"},"fill":{"color":"#EBF0F8"}}}],"scatter3d":[{"line":{"colorbar":{"ticks":"","outlinewidth":0}},"type":"scatter3d","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"scattergl":[{"type":"scattergl","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"histogram2d":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"histogram2d","colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"scatterternary":[{"type":"scatterternary","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"scatterpolargl":[{"type":"scatterpolargl","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}]}},"height":500,"margin":{"l":50,"b":50,"r":50,"t":60},"width":500}, {"editable":false,"responsive":true,"staticPlot":false,"scrollZoom":true}, diff --git a/previews/PR357/contributing/index.html b/previews/PR357/contributing/index.html index f2035f8d..a5e2f1d4 100644 --- a/previews/PR357/contributing/index.html +++ b/previews/PR357/contributing/index.html @@ -1,2 +1,2 @@ -Contributing · BasicBSpline.jl

Contributing

The main contributer Hyrodium is not native English speaker. So, English corrections would be really helpful. Of course, other code improvement are welcomed!

Feel free to open issues and pull requests!

+Contributing · BasicBSpline.jl

Contributing

The main contributer Hyrodium is not native English speaker. So, English corrections would be really helpful. Of course, other code improvement are welcomed!

Feel free to open issues and pull requests!

diff --git a/previews/PR357/geometricmodeling-arc.html b/previews/PR357/geometricmodeling-arc.html index bca2badd..eb2b8820 100644 --- a/previews/PR357/geometricmodeling-arc.html +++ b/previews/PR357/geometricmodeling-arc.html @@ -1,7 +1,7 @@ -
+
+
+
+
+
@@ -17,9 +17,9 @@ window.PLOTLYENV = window.PLOTLYENV || {} - if (document.getElementById('47978001-2ae7-41af-b127-4c1ebf588a68')) { + if (document.getElementById('284bf6da-4d53-4691-904b-c6f1e42c288a')) { Plotly.newPlot( - '47978001-2ae7-41af-b127-4c1ebf588a68', + '284bf6da-4d53-4691-904b-c6f1e42c288a', [{"x":[0.9953709320381123,1.0193213973898343,0.2947842694597301,-1.2209024461609082,-0.8492251518754993,0.8483695529395567,1.223911083908925,-0.30206030207110485,-1.35936874108042,-0.30206030207110596,1.2239110839089251,0.8483695529395564,-0.8492251518754991,-1.2209024461609084,0.29478426945972913,1.0193213973898347,0.9953709320381119],"line":{"color":"blue"},"y":[0.003396271230196344,0.4446750942572979,1.3217067455617073,0.5914273192366225,-1.0634935646238994,-1.062072671533547,0.5894312464269084,1.3250963187728524,8.161873954470877e-16,-1.3250963187728533,-0.5894312464269071,1.0620726715335445,1.063493564623902,-0.5914273192366224,-1.3217067455617035,-0.444675094257299,-0.0033962712301963682],"type":"scatter3d","name":"control points","z":[-3.729655473350135e-17,0.4487989505128284,1.346396851538485,2.6927937030769606,4.039190554615453,5.385587406153929,6.731984257692425,8.078381109230893,9.424777960769374,10.771174812307875,12.11757166384634,13.463968515384813,14.810365366923325,16.156762218461772,17.50315907000024,18.400756971025917,18.849555921538773],"marker":{"size":8}},{"mode":"lines","line":{"color":"red"},"y":[0.003396271230196344,0.07774252706071068,0.15167569647338505,0.2248351000262811,0.2968600582774606,0.36738989178498527,0.43606392110691666,0.5025214668013165,0.5664018494262466,0.6273443895397683,0.6849884076999438,0.7389732244648347,0.7889381603925023,0.8345225360410085,0.8753656719684149,0.9111068887327833,0.9413855068921757,0.9658408470046531,0.9841131479289633,0.996006072034758,1.0016736304088212,1.0013151029606255,0.9951297695996425,0.9833169102353448,0.9660758047772043,0.9436057331346932,0.9161059752172833,0.8837758109344468,0.8468145201956562,0.805421382910383,0.7597956789881,0.7101366883382786,0.6566436908703912,0.5995159664939099,0.5389527951183068,0.4751534566530544,0.4083206350672682,0.3387694743745987,0.26695065059304063,0.1933229086227072,0.1183449933637118,0.04247564971616779,-0.033826377419811336,-0.11010234314411238,-0.18589350255662182,-0.26074111075722645,-0.3341864228458128,-0.4057706939222673,-0.4750351790864769,-0.5415211334383274,-0.6047698120777069,-0.664322470104501,-0.7197203626185966,-0.7705047447198802,-0.8162372332669695,-0.8567378355574685,-0.8920041726390094,-0.922037356944467,-0.9468385009067151,-0.9664087169586281,-0.9807491175330801,-0.9898608150629462,-0.9937449219811,-0.9924025507204166,-0.9858348137137695,-0.9740428233940333,-0.9570276921940823,-0.934790532546791,-0.9073324568850338,-0.8746545776416843,-0.8367580072496185,-0.7936438581417088,-0.7453609931775858,-0.6922529572486579,-0.634775597175925,-0.5733849808471777,-0.5085371761502062,-0.4406882509728003,-0.3702942732027507,-0.2978113107278473,-0.22369543143588072,-0.14840270321464075,-0.0723891939519181,0.003889028464497443,0.07997589614681545,0.15541534120724543,0.2297512957579976,0.3025276919112813,0.37328846177930664,0.44157755281496197,0.5069906258997393,0.5692904786118465,0.6282736120010555,0.6837365271171374,0.7354757250098646,0.783287706729008,0.8269689733243399,0.866316025845631,0.9011253653426543,0.9311934928651808,0.9563169094629822,0.9762921161858299,0.9909156140834959,0.9999839042057519,1.0032934876023691,1.0006408653231196,0.9918225384177745,0.9766372228221332,0.9550766064170919,0.9274723620886829,0.8941907703171117,0.8555981115825815,0.8120606663652953,0.7639447151454595,0.7116165384032757,0.6554424166189503,0.5957886302726851,0.5330214598446865,0.46750718581515605,0.39961208866430076,0.3297024488723213,0.2581445469194254,0.18530466328581344,0.11154907845169296,0.037244072897264724,-0.03724407289726392,-0.1115490784516922,-0.18530466328581266,-0.25814454691942473,-0.32970244887232064,-0.39961208866430015,-0.46750718581515555,-0.5330214598446861,-0.5957886302726848,-0.65544241661895,-0.7116165384032754,-0.7639447151454593,-0.8120606663652953,-0.8555981115825815,-0.8941907703171117,-0.927472362088683,-0.9550766064170919,-0.9766372228221333,-0.9918225384177747,-1.0006408653231196,-1.0032934876023691,-0.999983904205752,-0.990915614083496,-0.9762921161858302,-0.9563169094629821,-0.9311934928651809,-0.9011253653426543,-0.8663160258456314,-0.8269689733243392,-0.7832877067290077,-0.7354757250098637,-0.6837365271171372,-0.6282736120010544,-0.5692904786118461,-0.5069906258997382,-0.4415775528149617,-0.3732884617793056,-0.30252769191128115,-0.22975129575799663,-0.15541534120724546,-0.0799758961468146,-0.0038890284644976037,0.07238919395191677,0.14840270321464036,0.2236954314358792,0.29781131072784667,0.37029427320274905,0.44068825097279957,0.5085371761502044,0.5733849808471768,0.6347755971759232,0.6922529572486569,0.745360993177584,0.7936438581417078,0.8367580072496169,0.8746545776416842,0.9073324568850331,0.9347905325467907,0.9570276921940819,0.9740428233940329,0.9858348137137692,0.9924025507204163,0.9937449219811002,0.9898608150629464,0.9807491175330807,0.9664087169586285,0.946838500906716,0.9220373569444676,0.8920041726390106,0.8567378355574703,0.816237233266971,0.7705047447198821,0.7197203626185981,0.6643224701045031,0.6047698120777084,0.5415211334383297,0.47503517908647785,0.4057706939222693,0.33418642284581374,0.26074111075722817,0.1858935025566227,0.11010234314411413,0.03382637741981216,-0.0424756497161662,-0.11834499336371117,-0.19332290862270557,-0.2669506505930399,-0.33876947437459726,-0.4083206350672658,-0.47515345665305436,-0.5389527951183064,-0.5995159664939086,-0.6566436908703891,-0.7101366883382784,-0.7597956789880991,-0.8054213829103815,-0.8468145201956541,-0.8837758109344442,-0.9161059752172817,-0.9436057331346911,-0.9660758047772021,-0.9833169102353424,-0.9951297695996406,-1.0013151029606233,-1.0016736304088192,-0.9960060720347561,-0.9841131479289611,-0.9658408470046512,-0.9413855068921742,-0.9111068887327823,-0.875365671968413,-0.8345225360410071,-0.7889381603925014,-0.7389732244648346,-0.6849884076999422,-0.6273443895397675,-0.5664018494262466,-0.5025214668013175,-0.4360639211069152,-0.3673898917849847,-0.29686005827746104,-0.22483510002628238,-0.15167569647338364,-0.07774252706071,-0.0033962712301963682],"type":"scatter3d","name":"B-spline curve","z":[-3.729655473350135e-17,0.07570102779734453,0.15140205559468906,0.2271030833920336,0.3028041111893781,0.3785051389867227,0.45420616678406733,0.5299071945814118,0.6056082223787562,0.6813092501761007,0.7570102779734451,0.8327113057707898,0.9084123335681342,0.9841133613654783,1.059814389162823,1.1355154169601671,1.2112164447575116,1.2869174725548558,1.3626185003522,1.4383195281495444,1.5140205559468887,1.589721583744233,1.6654226115415771,1.7411236393389211,1.8168246671362658,1.8925256949336096,1.9682267227309538,2.043927750528298,2.119628778325642,2.1953298061229867,2.271030833920331,2.3467318617176747,2.4224328895150196,2.498133917312364,2.573834945109708,2.649535972907052,2.725237000704397,2.8009380285017413,2.8766390562990853,2.9523400840964302,3.0280411118937756,3.10374213969112,3.179443167488465,3.255144195285809,3.330845223083154,3.4065462508804987,3.4822472786778436,3.557948306475188,3.6336493342725333,3.7093503620698773,3.7850513898672222,3.8607524176645667,3.936453445461911,4.012154473259256,4.0878555010566,4.1635565288539444,4.239257556651289,4.314958584448634,4.390659612245979,4.466360640043322,4.542061667840667,4.61776269563801,4.693463723435355,4.7691647512327,4.8448657790300445,4.920566806827389,4.996267834624733,5.071968862422078,5.147669890219421,5.223370918016765,5.299071945814109,5.374772973611454,5.450474001408799,5.526175029206144,5.601876057003489,5.6775770848008325,5.753278112598178,5.828979140395524,5.9046801681928685,5.980381195990212,6.0560822237875565,6.131783251584903,6.207484279382246,6.283185307179592,6.358886334976937,6.434587362774281,6.510288390571627,6.585989418368971,6.6616904461663164,6.737391473963659,6.813092501761004,6.888793529558347,6.9644945573556925,7.040195585153037,7.115896612950381,7.191597640747726,7.267298668545069,7.342999696342412,7.418700724139755,7.494401751937099,7.570102779734444,7.645803807531788,7.721504835329132,7.797205863126476,7.87290689092382,7.948607918721163,8.024308946518506,8.100009974315853,8.175711002113195,8.25141202991054,8.327113057707882,8.402814085505227,8.47851511330257,8.554216141099914,8.62991716889726,8.705618196694601,8.781319224491948,8.857020252289292,8.932721280086637,9.00842230788398,9.084123335681324,9.15982436347867,9.235525391276015,9.311226419073359,9.386927446870704,9.46262847466805,9.538329502465395,9.614030530262738,9.689731558060085,9.765432585857429,9.841133613654774,9.91683464145212,9.992535669249465,10.06823669704681,10.143937724844154,10.2196387526415,10.295339780438846,10.37104080823619,10.446741836033535,10.522442863830879,10.598143891628224,10.673844919425568,10.749545947222913,10.825246975020256,10.900948002817602,10.976649030614947,11.05235005841229,11.128051086209634,11.203752114006976,11.279453141804323,11.355154169601665,11.430855197399008,11.506556225196352,11.5822572529937,11.65795828079104,11.733659308588386,11.809360336385726,11.88506136418307,11.960762391980413,12.036463419777757,12.1121644475751,12.187865475372448,12.26356650316979,12.339267530967133,12.414968558764476,12.49066958656182,12.566370614359164,12.642071642156507,12.717772669953854,12.793473697751194,12.869174725548538,12.944875753345883,13.02057678114323,13.096277808940574,13.17197883673792,13.247679864535263,13.32338089233261,13.39908192012995,13.474782947927297,13.550483975724642,13.626185003521988,13.701886031319335,13.777587059116678,13.853288086914024,13.928989114711369,14.004690142508714,14.08039117030606,14.156092198103403,14.231793225900752,14.307494253698094,14.383195281495443,14.458896309292786,14.534597337090133,14.610298364887475,14.685999392684819,14.761700420482164,14.837401448279506,14.913102476076853,14.988803503874193,15.06450453167154,15.140205559468884,15.215906587266229,15.291607615063569,15.367308642860912,15.443009670658254,15.5187106984556,15.594411726252941,15.670112754050283,15.745813781847627,15.82151480964497,15.897215837442312,15.972916865239657,16.048617893037,16.124318920834344,16.200019948631688,16.275720976429028,16.35142200422637,16.42712303202371,16.502824059821062,16.578525087618402,16.654226115415742,16.72992714321309,16.805628171010433,16.88132919880778,16.95703022660512,17.032731254402464,17.108432282199807,17.184133309997154,17.259834337794498,17.33553536559184,17.41123639338919,17.486937421186532,17.562638448983876,17.638339476781223,17.714040504578563,17.789741532375917,17.865442560173264,17.941143587970604,18.016844615767944,18.09254564356529,18.168246671362642,18.24394769915999,18.319648726957336,18.395349754754683,18.47105078255203,18.546751810349377,18.622452838146724,18.69815386594408,18.773854893741422,18.849555921538773],"x":[0.9953709320381123,0.9958039190046628,0.989246972043403,0.9760357419505833,0.9565058795224547,0.9309930355552689,0.8998328608452753,0.8633610061887252,0.82191312238187,0.7758248602209601,0.7254318705022462,0.6710698040219795,0.6130743115764106,0.5517810439617903,0.4875256519743695,0.4206437864103991,0.3514710980661298,0.28034323773781256,0.2075959809219457,0.1335872951404996,0.05872272336901418,-0.016586044156636913,-0.09192731720058016,-0.16688940552694198,-0.2410606188998489,-0.31402926708342704,-0.3853836598418032,-0.45471210693910363,-0.5216029181394548,-0.585644403206983,-0.6464248719058152,-0.7035326340000772,-0.7565559992538955,-0.8050832774313967,-0.8487027782967073,-0.8870028116139534,-0.9195783975519709,-0.9462462481684997,-0.9670902490421011,-0.9822101918958318,-0.9917058684527486,-0.995677070435908,-0.9942235895683671,-0.9874452175731824,-0.9754417461734106,-0.9583129670921086,-0.9361586720523328,-0.9090786527771405,-0.8771727009895879,-0.8405406084127324,-0.7992821667696298,-0.7534971677833373,-0.7032854031769117,-0.6487466646734095,-0.5899971650721494,-0.5273615004049572,-0.4613075062426825,-0.39230583384140577,-0.3208271344572066,-0.2473420593461651,-0.17232125976436127,-0.09623538696787533,-0.019555092212787024,0.0572489732448235,0.1337061581488763,0.20934581124329132,0.28369728127198857,0.3562899169788879,0.4266530671079096,0.49431608040297326,0.5588083056079987,0.6196590914669069,0.6764363747216662,0.7289462300836836,0.777085485519037,0.820751147641943,0.8598402230666181,0.8942497184072794,0.923876640278143,0.9486179952934257,0.9683707900673441,0.9830320312141152,0.992498725347955,0.9966678790830807,0.9954364990337087,0.9887015918140556,0.9763601640383384,0.958309222320773,0.9344457732755769,0.90466685536034,0.8689768510459029,0.8277270763612073,0.7813388072275445,0.7302333195662052,0.6748318892984808,0.6155557923456624,0.552826304629041,0.48706470206990876,0.4186922605895551,0.3481302561092718,0.2757999645503502,0.20212266183408123,0.12751962388175622,0.05241212661466614,-0.022778554045897875,-0.09763114217864458,-0.17172436186228296,-0.2446374375583026,-0.315993189577884,-0.38549124698892084,-0.45283905734023505,-0.5177440681806534,-0.579913727059003,-0.6390554815241059,-0.6948767791247903,-0.7470850674098787,-0.7953877939281992,-0.8394924062285746,-0.8791063518598322,-0.9139370783707953,-0.9436920333102914,-0.9680786642271438,-0.9868044186701793,-0.9995767441882224,-1.0061030883300985,-1.0061030883300985,-0.9995767441882224,-0.9868044186701795,-0.9680786642271442,-0.9436920333102916,-0.9139370783707957,-0.8791063518598325,-0.839492406228575,-0.7953877939281997,-0.7470850674098792,-0.6948767791247907,-0.6390554815241064,-0.5799137270590037,-0.5177440681806541,-0.45283905734023566,-0.3854912469889215,-0.31599318957788475,-0.2446374375583033,-0.17172436186228368,-0.09763114217864617,-0.022778554045898524,0.05241212661466469,0.12751962388175556,0.20212266183407981,0.2757999645503497,0.34813025610927045,0.4186922605895546,0.48706470206990754,0.5528263046290415,0.6155557923456619,0.6748318892984811,0.7302333195662049,0.7813388072275446,0.8277270763612071,0.8689768510459032,0.9046668553603398,0.9344457732755771,0.9583092223207729,0.9763601640383383,0.9887015918140555,0.9954364990337087,0.9966678790830806,0.992498725347955,0.983032031214115,0.9683707900673442,0.9486179952934255,0.9238766402781431,0.8942497184072794,0.8598402230666187,0.8207511476419429,0.7770854855190373,0.7289462300836835,0.6764363747216665,0.6196590914669067,0.5588083056079994,0.4943160804029725,0.42665306710790946,0.356289916978887,0.28369728127198834,0.2093458112432903,0.13370615814887618,0.05724897324482255,-0.01955509221278706,-0.09623538696787629,-0.17232125976436136,-0.24734205934616593,-0.32082713445720656,-0.3923058338414065,-0.4613075062426826,-0.5273615004049563,-0.5899971650721494,-0.6487466646734087,-0.7032854031769114,-0.7534971677833365,-0.7992821667696296,-0.8405406084127318,-0.8771727009895882,-0.9090786527771403,-0.9361586720523329,-0.9583129670921084,-0.9754417461734107,-0.9874452175731823,-0.9942235895683671,-0.995677070435908,-0.9917058684527484,-0.982210191895832,-0.9670902490421012,-0.9462462481685002,-0.9195783975519718,-0.8870028116139531,-0.8487027782967073,-0.8050832774313972,-0.7565559992538964,-0.7035326340000763,-0.6464248719058149,-0.5856444032069835,-0.521602918139456,-0.45471210693910574,-0.3853836598418028,-0.3140292670834276,-0.24106061889985014,-0.1668894055269441,-0.09192731720057959,-0.016586044156637142,0.05872272336901302,0.13358729514049758,0.20759598092194623,0.2803432377378126,0.3514710980661291,0.4206437864103975,0.4875256519743704,0.5517810439617905,0.6130743115764099,0.6710698040219784,0.7254318705022469,0.7758248602209602,0.8219131223818699,0.8633610061887248,0.8998328608452757,0.9309930355552688,0.956505879522455,0.976035741950583,0.9892469720434032,0.9958039190046626,0.9953709320381119]}], {"template":{"layout":{"coloraxis":{"colorbar":{"ticks":"","outlinewidth":0}},"xaxis":{"gridcolor":"white","zerolinewidth":2,"title":{"standoff":15},"ticks":"","zerolinecolor":"white","automargin":true,"linecolor":"white"},"hovermode":"closest","paper_bgcolor":"white","geo":{"showlakes":true,"showland":true,"landcolor":"#E5ECF6","bgcolor":"white","subunitcolor":"white","lakecolor":"white"},"colorscale":{"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]},"yaxis":{"gridcolor":"white","zerolinewidth":2,"title":{"standoff":15},"ticks":"","zerolinecolor":"white","automargin":true,"linecolor":"white"},"shapedefaults":{"line":{"color":"#2a3f5f"}},"hoverlabel":{"align":"left"},"mapbox":{"style":"light"},"polar":{"angularaxis":{"gridcolor":"white","ticks":"","linecolor":"white"},"bgcolor":"#E5ECF6","radialaxis":{"gridcolor":"white","ticks":"","linecolor":"white"}},"autotypenumbers":"strict","font":{"color":"#2a3f5f"},"ternary":{"baxis":{"gridcolor":"white","ticks":"","linecolor":"white"},"bgcolor":"#E5ECF6","caxis":{"gridcolor":"white","ticks":"","linecolor":"white"},"aaxis":{"gridcolor":"white","ticks":"","linecolor":"white"}},"annotationdefaults":{"arrowhead":0,"arrowwidth":1,"arrowcolor":"#2a3f5f"},"plot_bgcolor":"#E5ECF6","title":{"x":0.05},"scene":{"xaxis":{"gridcolor":"white","gridwidth":2,"backgroundcolor":"#E5ECF6","ticks":"","showbackground":true,"zerolinecolor":"white","linecolor":"white"},"zaxis":{"gridcolor":"white","gridwidth":2,"backgroundcolor":"#E5ECF6","ticks":"","showbackground":true,"zerolinecolor":"white","linecolor":"white"},"yaxis":{"gridcolor":"white","gridwidth":2,"backgroundcolor":"#E5ECF6","ticks":"","showbackground":true,"zerolinecolor":"white","linecolor":"white"}},"colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"]},"data":{"barpolar":[{"type":"barpolar","marker":{"line":{"color":"#E5ECF6","width":0.5}}}],"carpet":[{"aaxis":{"gridcolor":"white","endlinecolor":"#2a3f5f","minorgridcolor":"white","startlinecolor":"#2a3f5f","linecolor":"white"},"type":"carpet","baxis":{"gridcolor":"white","endlinecolor":"#2a3f5f","minorgridcolor":"white","startlinecolor":"#2a3f5f","linecolor":"white"}}],"scatterpolar":[{"type":"scatterpolar","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"parcoords":[{"line":{"colorbar":{"ticks":"","outlinewidth":0}},"type":"parcoords"}],"scatter":[{"type":"scatter","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"histogram2dcontour":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"histogram2dcontour","colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"contour":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"contour","colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"scattercarpet":[{"type":"scattercarpet","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"mesh3d":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"mesh3d"}],"surface":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"surface","colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"scattermapbox":[{"type":"scattermapbox","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"scattergeo":[{"type":"scattergeo","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"histogram":[{"type":"histogram","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"pie":[{"type":"pie","automargin":true}],"choropleth":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"choropleth"}],"heatmapgl":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"heatmapgl","colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"bar":[{"type":"bar","error_y":{"color":"#2a3f5f"},"error_x":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5}}}],"heatmap":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"heatmap","colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"contourcarpet":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"contourcarpet"}],"table":[{"type":"table","header":{"line":{"color":"white"},"fill":{"color":"#C8D4E3"}},"cells":{"line":{"color":"white"},"fill":{"color":"#EBF0F8"}}}],"scatter3d":[{"line":{"colorbar":{"ticks":"","outlinewidth":0}},"type":"scatter3d","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"scattergl":[{"type":"scattergl","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"histogram2d":[{"colorbar":{"ticks":"","outlinewidth":0},"type":"histogram2d","colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"scatterternary":[{"type":"scatterternary","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}],"scatterpolargl":[{"type":"scatterpolargl","marker":{"colorbar":{"ticks":"","outlinewidth":0}}}]}},"height":500,"margin":{"l":50,"b":50,"r":50,"t":60},"width":500}, {"editable":false,"responsive":true,"staticPlot":false,"scrollZoom":true}, diff --git a/previews/PR357/histogram-uniform.html b/previews/PR357/histogram-uniform.html index 1855895f..143ec8d6 100644 --- a/previews/PR357/histogram-uniform.html +++ b/previews/PR357/histogram-uniform.html @@ -1,7 +1,7 @@ -
+
+
+
+
+

Refinement

Documentation

Example

Define original manifold

p = 2 # degree of polynomial
+Refinement · BasicBSpline.jl

Refinement

Documentation

Example

Define original manifold

p = 2 # degree of polynomial
 k = KnotVector(1:8) # knot vector
 P = BSplineSpace{p}(k) # B-spline space
 rand_a = [SVector(rand(), rand()) for i in 1:dim(P), j in 1:dim(P)]
 a = [SVector(2*i-6.5, 2*j-6.5) for i in 1:dim(P), j in 1:dim(P)] + rand_a # random
-M = BSplineManifold(a,(P,P)) # Define B-spline manifold

h-refinement

Insert additional knots to knot vector.

julia> k₊ = (KnotVector([3.3,4.2]),KnotVector([3.8,3.2,5.3])) # additional knot vectors(KnotVector([3.3, 4.2]), KnotVector([3.2, 3.8, 5.3]))
julia> M_h = refinement(M, k₊) # refinement of B-spline manifoldBSplineManifold{2, (2, 2), StaticArraysCore.SVector{2, Float64}, Float64, Tuple{BSplineSpace{2, Float64, KnotVector{Float64}}, BSplineSpace{2, Float64, KnotVector{Float64}}}}(StaticArraysCore.SVector{2, Float64}[[-3.7392559679567654, -3.783078079871714] [-3.597411705002145, -2.6270907448400385] … [-4.27252342702906, 2.44794251443626] [-4.010429310201709, 3.869439330221196]; [-2.328731904641716, -4.1480930630807595] [-2.275419510381314, -2.8615581264721692] … [-2.736955136391798, 2.5020454657912223] [-2.786990222003846, 3.8096177268489324]; … ; [2.359972932445208, -3.6129585850258517] [2.373167856283101, -2.9446206124413257] … [2.210716406024899, 2.602631448306355] [2.3997592455372003, 3.5324898804805147]; [4.093841853317975, -3.9061261483801712] [3.8504632555175444, -2.9860983311743827] … [4.331025079311032, 2.333423772424664] [4.480663191353303, 4.436571553462537]], (BSplineSpace{2, Float64, KnotVector{Float64}}(KnotVector([1.0, 2.0, 3.0, 3.3, 4.0, 4.2, 5.0, 6.0, 7.0, 8.0])), BSplineSpace{2, Float64, KnotVector{Float64}}(KnotVector([1.0, 2.0, 3.0, 3.2, 3.8, 4.0, 5.0, 5.3, 6.0, 7.0, 8.0]))))
julia> save_png("2dim_h-refinement.png", M_h) # save image

Note that this shape and the last shape are equivalent.

p-refinement

Increase the polynomial degree of B-spline manifold.

julia> p₊ = (Val(1), Val(2)) # additional degrees(Val{1}(), Val{2}())
julia> M_p = refinement(M, p₊) # refinement of B-spline manifoldBSplineManifold{2, (3, 4), StaticArraysCore.SVector{2, Float64}, Int64, Tuple{BSplineSpace{3, Int64, KnotVector{Int64}}, BSplineSpace{4, Int64, KnotVector{Int64}}}}(StaticArraysCore.SVector{2, Float64}[[-3.327939887958376, -3.381062882382532] [-3.2286534014564956, -2.3898453165277354] … [-3.857369028126979, 2.625613347418197] [-3.750274329305369, 3.444604754180493]; [-1.9190826728891883, -3.6996476508119316] [-1.8954644502285198, -2.596850938310199] … [-2.320089840437407, 2.6673570013295036] [-2.4013083859231266, 3.417615645058782]; … ; [2.63663136518713, -3.36586722890932] [2.6119919237133846, -2.773961995558151] … [2.5855688772510934, 2.690164285500753] [2.692907338976954, 3.352168201374152]; [3.7212735564249955, -3.491398425417405] [3.554093269596626, -2.759665500609979] … [3.9960174259147876, 2.6027151956081522] [4.087903053338675, 3.7248325816241836]], (BSplineSpace{3, Int64, KnotVector{Int64}}(KnotVector([1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8])), BSplineSpace{4, Int64, KnotVector{Int64}}(KnotVector([1, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 8]))))
julia> save_png("2dim_p-refinement.png", M_p) # save image

Note that this shape and the last shape are equivalent.

+M = BSplineManifold(a,(P,P)) # Define B-spline manifold

h-refinement

Insert additional knots to knot vector.

julia> k₊ = (KnotVector([3.3,4.2]),KnotVector([3.8,3.2,5.3])) # additional knot vectors(KnotVector([3.3, 4.2]), KnotVector([3.2, 3.8, 5.3]))
julia> M_h = refinement(M, k₊) # refinement of B-spline manifoldBSplineManifold{2, (2, 2), StaticArraysCore.SVector{2, Float64}, Float64, Tuple{BSplineSpace{2, Float64, KnotVector{Float64}}, BSplineSpace{2, Float64, KnotVector{Float64}}}}(StaticArraysCore.SVector{2, Float64}[[-3.7392559679567654, -3.783078079871714] [-3.597411705002145, -2.6270907448400385] … [-4.27252342702906, 2.44794251443626] [-4.010429310201709, 3.869439330221196]; [-2.328731904641716, -4.1480930630807595] [-2.275419510381314, -2.8615581264721692] … [-2.736955136391798, 2.5020454657912223] [-2.786990222003846, 3.8096177268489324]; … ; [2.359972932445208, -3.6129585850258517] [2.373167856283101, -2.9446206124413257] … [2.210716406024899, 2.602631448306355] [2.3997592455372003, 3.5324898804805147]; [4.093841853317975, -3.9061261483801712] [3.8504632555175444, -2.9860983311743827] … [4.331025079311032, 2.333423772424664] [4.480663191353303, 4.436571553462537]], (BSplineSpace{2, Float64, KnotVector{Float64}}(KnotVector([1.0, 2.0, 3.0, 3.3, 4.0, 4.2, 5.0, 6.0, 7.0, 8.0])), BSplineSpace{2, Float64, KnotVector{Float64}}(KnotVector([1.0, 2.0, 3.0, 3.2, 3.8, 4.0, 5.0, 5.3, 6.0, 7.0, 8.0]))))
julia> save_png("2dim_h-refinement.png", M_h) # save image

Note that this shape and the last shape are equivalent.

p-refinement

Increase the polynomial degree of B-spline manifold.

julia> p₊ = (Val(1), Val(2)) # additional degrees(Val{1}(), Val{2}())
julia> M_p = refinement(M, p₊) # refinement of B-spline manifoldBSplineManifold{2, (3, 4), StaticArraysCore.SVector{2, Float64}, Int64, Tuple{BSplineSpace{3, Int64, KnotVector{Int64}}, BSplineSpace{4, Int64, KnotVector{Int64}}}}(StaticArraysCore.SVector{2, Float64}[[-3.327939887958376, -3.381062882382532] [-3.2286534014564956, -2.3898453165277354] … [-3.857369028126979, 2.625613347418197] [-3.750274329305369, 3.444604754180493]; [-1.9190826728891883, -3.6996476508119316] [-1.8954644502285198, -2.596850938310199] … [-2.320089840437407, 2.6673570013295036] [-2.4013083859231266, 3.417615645058782]; … ; [2.63663136518713, -3.36586722890932] [2.6119919237133846, -2.773961995558151] … [2.5855688772510934, 2.690164285500753] [2.692907338976954, 3.352168201374152]; [3.7212735564249955, -3.491398425417405] [3.554093269596626, -2.759665500609979] … [3.9960174259147876, 2.6027151956081522] [4.087903053338675, 3.7248325816241836]], (BSplineSpace{3, Int64, KnotVector{Int64}}(KnotVector([1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8])), BSplineSpace{4, Int64, KnotVector{Int64}}(KnotVector([1, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 8]))))
julia> save_png("2dim_p-refinement.png", M_p) # save image

Note that this shape and the last shape are equivalent.

diff --git a/previews/PR357/math/index.html b/previews/PR357/math/index.html index cbc36031..99f91122 100644 --- a/previews/PR357/math/index.html +++ b/previews/PR357/math/index.html @@ -1,3 +1,3 @@ Introduction · BasicBSpline.jl

Mathematical properties of B-spline

Introduction

B-spline is a mathematical object, and it has a lot of application. (e.g. Geometric representation: NURBS, Interpolation, Numerical analysis: IGA)

In this page, we'll explain the mathematical definitions and properties of B-spline with Julia code. Before running the code in the following section, you need to import packages:

using BasicBSpline
-using Plots; plotly()
Plots.PlotlyBackend()

Notice

Some of notations in this page are our original, but these are well-considered results.

References

Most of this documentation around B-spline is self-contained. If you want to learn more, the following resources are recommended.

日本語の文献では以下がおすすめです。

+using Plots; plotly()
Plots.PlotlyBackend()

Notice

Some of notations in this page are our original, but these are well-considered results.

References

Most of this documentation around B-spline is self-contained. If you want to learn more, the following resources are recommended.

日本語の文献では以下がおすすめです。

diff --git a/previews/PR357/plotlyjs/index.html b/previews/PR357/plotlyjs/index.html index b6b825d8..90b124d9 100644 --- a/previews/PR357/plotlyjs/index.html +++ b/previews/PR357/plotlyjs/index.html @@ -37,4 +37,4 @@ zs_f = getindex.(M.(ts),3) fig = Plot(scatter3d(x=xs_a, y=ys_a, z=zs_a, name="control points", line_color="blue", marker_size=8)) addtraces!(fig, scatter3d(x=xs_f, y=ys_f, z=zs_f, name="B-spline curve", mode="lines", line_color="red")) -relayout!(fig, width=500, height=500) +relayout!(fig, width=500, height=500) diff --git a/previews/PR357/plots-arc.html b/previews/PR357/plots-arc.html index 1f44c11d..76e73621 100644 --- a/previews/PR357/plots-arc.html +++ b/previews/PR357/plots-arc.html @@ -1,7 +1,7 @@ -
+
+
+
+
+
+
+
+
+
+
+
+