Contributing
The main contributer Hyrodium is not native English speaker. So, English corrections would be really helpful. Of course, other code improvement are welcomed!
Feel free to open issues and pull requests!
diff --git a/previews/PR336/.documenter-siteinfo.json b/previews/PR336/.documenter-siteinfo.json index 69ccc28dd..8f07eee39 100644 --- a/previews/PR336/.documenter-siteinfo.json +++ b/previews/PR336/.documenter-siteinfo.json @@ -1 +1 @@ -{"documenter":{"julia_version":"1.9.3","generation_timestamp":"2023-10-16T15:15:13","documenter_version":"1.1.1"}} \ No newline at end of file +{"documenter":{"julia_version":"1.9.3","generation_timestamp":"2023-10-16T15:18:41","documenter_version":"1.1.1"}} \ No newline at end of file diff --git a/previews/PR336/1dim-manifold.html b/previews/PR336/1dim-manifold.html index 1b948936d..b51f5e7bb 100644 --- a/previews/PR336/1dim-manifold.html +++ b/previews/PR336/1dim-manifold.html @@ -1,7 +1,7 @@ -
+ + + + + + + + +The main contributer Hyrodium is not native English speaker. So, English corrections would be really helpful. Of course, other code improvement are welcomed!
Feel free to open issues and pull requests!
Settings
This document was generated with Documenter.jl version 1.1.1 on Monday 16 October 2023. Using Julia version 1.9.3.
The main contributer Hyrodium is not native English speaker. So, English corrections would be really helpful. Of course, other code improvement are welcomed!
Feel free to open issues and pull requests!
Settings
This document was generated with Documenter.jl version 1.1.1 on Monday 16 October 2023. Using Julia version 1.9.3.
Note that the following methods are considered private methods, and changes in their behavior are not considered breaking changes.
BasicBSpline.r_nomial
— FunctionCalculate $r$-nomial coefficient
r_nomial(n, k, r)
\[(1+x+\cdots+x^r)^n = \sum_{k} a_{n,k,r} x^k\]
BasicBSpline._vec
— FunctionConvert AbstractKnotVector
to AbstractVector
BasicBSpline._lower_R
— FunctionInternal methods for obtaining a B-spline space with one degree lower.
\[\begin{aligned} +
Note that the following methods are considered private methods, and changes in their behavior are not considered breaking changes.
BasicBSpline.r_nomial
— FunctionCalculate $r$-nomial coefficient
r_nomial(n, k, r)
\[(1+x+\cdots+x^r)^n = \sum_{k} a_{n,k,r} x^k\]
BasicBSpline._vec
— FunctionConvert AbstractKnotVector
to AbstractVector
BasicBSpline._lower_R
— FunctionInternal methods for obtaining a B-spline space with one degree lower.
\[\begin{aligned} \mathcal{P}[p,k] &\mapsto \mathcal{P}[p-1,k] \\ D^r\mathcal{P}[p,k] &\mapsto D^{r-1}\mathcal{P}[p-1,k] -\end{aligned}\]
BasicBSpline._changebasis_sim
— FunctionReturn a coefficient matrix $A$ which satisfy
\[B_{(i,p_1,k_1)} = \sum_{j}A_{i,j}B_{(j,p_2,k_2)}\]
Assumption:
BasicBSplineFitting.innerproduct_R
— FunctionCalculate a matrix
\[A_{ij}=\int_{\mathbb{R}} B_{(i,p,k)}(t) B_{(j,p,k)}(t) dt\]
BasicBSplineFitting.innerproduct_I
— FunctionCalculate a matrix
\[A_{ij}=\int_{I} B_{(i,p,k)}(t) B_{(j,p,k)}(t) dt\]
Settings
This document was generated with Documenter.jl version 1.1.1 on Monday 16 October 2023. Using Julia version 1.9.3.
BasicBSpline._changebasis_sim
— FunctionReturn a coefficient matrix $A$ which satisfy
\[B_{(i,p_1,k_1)} = \sum_{j}A_{i,j}B_{(j,p_2,k_2)}\]
Assumption:
BasicBSplineFitting.innerproduct_R
— FunctionCalculate a matrix
\[A_{ij}=\int_{\mathbb{R}} B_{(i,p,k)}(t) B_{(j,p,k)}(t) dt\]
BasicBSplineFitting.innerproduct_I
— FunctionCalculate a matrix
\[A_{ij}=\int_{I} B_{(i,p,k)}(t) B_{(j,p,k)}(t) dt\]
Settings
This document was generated with Documenter.jl version 1.1.1 on Monday 16 October 2023. Using Julia version 1.9.3.