-
Notifications
You must be signed in to change notification settings - Fork 0
/
run.py
355 lines (272 loc) · 15 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
from typing import Dict, Tuple
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.backends import cudnn
from torch.utils.data.dataloader import DataLoader
import wandb
from tqdm import tqdm
from utils.common_utils import (save_checkpoint, parse, dprint, time_log, compute_param_norm,
freeze_bn, zero_grad_bn, RunningAverage, Timer)
from utils.dist_utils import all_reduce_dict
from utils.wandb_utils import set_wandb
from utils.seg_utils import UnsupervisedMetrics, batched_crf, get_metrics
from build import (build_model, build_criterion, build_dataset, build_dataloader, build_optimizer)
from pytorch_lightning.utilities.seed import seed_everything
from loss import SupConLoss
def run(opt: dict, is_test: bool = False, is_debug: bool = False):
is_train = (not is_test)
seed_everything(seed=0)
scaler = torch.cuda.amp.GradScaler(init_scale=2048, growth_interval=1000, enabled=True)
# -------------------- Folder Setup (Task-Specific) --------------------------#
prefix = "{}/{}_{}".format(opt["output_dir"], opt["dataset"]["data_type"], opt["wandb"]["name"])
opt["full_name"] = prefix
cudnn.benchmark = True
world_size=1
local_rank = 0
wandb_save_dir = set_wandb(opt, local_rank, force_mode="disabled" if (is_debug or is_test) else None)
# ------------------------ DataLoader ------------------------------#
if is_train:
train_dataset = build_dataset(opt["dataset"], mode="train", model_type=opt["model"]["pretrained"]["model_type"])
train_loader = build_dataloader(train_dataset, opt["dataloader"], shuffle=True)
else:
train_loader = None
val_dataset = build_dataset(opt["dataset"], mode="val", model_type=opt["model"]["pretrained"]["model_type"])
val_loader = build_dataloader(val_dataset, opt["dataloader"], shuffle=False, batch_size=8)
# -------------------------- Define -------------------------------#
net_model, linear_model, cluster_model = build_model(opt=opt["model"], n_classes=val_dataset.n_classes, is_direct=opt["eval"]["is_direct"])
criterion = build_criterion(n_classes=val_dataset.n_classes)
device = torch.device("cuda", 0)
net_model = net_model.to(device)
linear_model = linear_model.to(device)
cluster_model = cluster_model.to(device)
criterion = criterion.to(device)
supcon_criterion = SupConLoss(temperature=opt["training_coeff"]["tau"], contrast_mode='one', opt=opt["training_coeff"]).to(device)
model = net_model
model_m = model
print("Model:")
print(model_m)
# ------------------- Optimizer -----------------------#
if is_train:
net_optimizer, linear_probe_optimizer, cluster_probe_optimizer = build_optimizer(
main_params=model_m.parameters(),
linear_params=linear_model.parameters(),
cluster_params=cluster_model.parameters(),
opt=opt["optimizer"],
model_type=opt["model"]["name"])
else:
net_optimizer, linear_probe_optimizer, cluster_probe_optimizer = None, None, None
start_epoch, current_iter = 0, 0
best_metric, best_epoch, best_iter = 0, 0, 0
num_accum = 1
timer = Timer()
# --------------------------- Train --------------------------------#
assert is_train
max_epoch = opt["train"]["epoch"]
print_freq = opt["train"]["print_freq"]
valid_freq = opt["train"]["valid_freq"]
grad_norm = opt["train"]["grad_norm"]
freeze_encoder_bn = opt["train"]["freeze_encoder_bn"]
freeze_all_bn = opt["train"]["freeze_all_bn"]
best_valid_metrics = dict(Cluster_mIoU=0, Cluster_Accuracy=0, Linear_mIoU=0, Linear_Accuracy=0)
train_stats = RunningAverage()
for current_epoch in range(start_epoch, max_epoch):
print(f"-------- [{current_epoch}/{max_epoch} (iters: {current_iter})]--------")
g_norm = torch.zeros(1, dtype=torch.float32, device=device)
net_model.train()
linear_model.train()
cluster_model.train()
train_stats.reset()
_ = timer.update()
for i, data in enumerate(train_loader):
img: torch.Tensor = data['img'].to(device, non_blocking=True)
label: torch.Tensor = data['label'].to(device, non_blocking=True)
data_time = timer.update()
if freeze_encoder_bn:
freeze_bn(model_m.model)
if 0 < freeze_all_bn <= current_epoch:
freeze_bn(net_model)
batch_size = img.shape[0]
net_optimizer.zero_grad(set_to_none=True)
linear_probe_optimizer.zero_grad(set_to_none=True)
cluster_probe_optimizer.zero_grad(set_to_none=True)
model_input = (img, label)
with torch.cuda.amp.autocast(enabled=True):
model_output = net_model(img)
feat = model_output[3]
z = model_output[2]
loss_supcon, pos_num, neg_num = supcon_criterion(z, feat.detach())
detached_code = torch.clone(model_output[1].detach())
with torch.cuda.amp.autocast(enabled=True):
linear_output = linear_model(detached_code)
cluster_output = cluster_model(detached_code, None, is_direct=False)
loss, loss_dict = criterion(model_input=model_input, linear_output=linear_output, cluster_output=cluster_output)
loss = loss + loss_supcon
forward_time = timer.update()
scaler.scale(loss).backward()
if freeze_encoder_bn:
zero_grad_bn(model_m)
if 0 < freeze_all_bn <= current_epoch:
zero_grad_bn(net_model)
scaler.unscale_(net_optimizer)
g_norm = nn.utils.clip_grad_norm_(net_model.parameters(), grad_norm)
scaler.step(net_optimizer)
scaler.step(linear_probe_optimizer)
scaler.step(cluster_probe_optimizer)
scaler.update()
current_iter += 1
backward_time = timer.update()
loss_dict = all_reduce_dict(loss_dict, op="mean")
train_stats.append(loss_dict["loss"])
if i % print_freq == 0:
lrs = [int(pg["lr"] * 1e8) / 1e8 for pg in net_optimizer.param_groups]
p_norm = compute_param_norm(net_model.parameters())
s = time_log()
s += f"epoch: {current_epoch}, iters: {current_iter} " \
f"({i} / {len(train_loader)} -th batch of loader)\n"
s += f"loss(now/avg): {loss_dict['loss']:.6f}/{train_stats.avg:.6f}\n"
if len(loss_dict) > 2:
for loss_k, loss_v in loss_dict.items():
if loss_k != "loss":
s += f"-- {loss_k}(now): {loss_v:.6f}\n"
s += f"time(data/fwd/bwd): {data_time:.3f}/{forward_time:.3f}/{backward_time:.3f}\n"
s += f"LR: {lrs}\n"
print(s)
wandb.log({
"epoch": current_epoch,
"iters": current_iter,
"train_loss": loss_dict['loss'],
"supcon_loss": loss_supcon,
"net_lr": net_optimizer.param_groups[0]['lr'],
"param_norm": p_norm.item(),
"grad_norm": g_norm.item(),
"num_positives": pos_num,
"num_negatives": neg_num,
})
# --------------------------- Valid --------------------------------#
if ((i + 1) % valid_freq == 0) or ((i + 1) == len(train_loader)):
torch.cuda.empty_cache()
_ = timer.update()
valid_loss, valid_metrics = evaluate(net_model, linear_model, cluster_model, val_loader,
device=device, opt=opt, n_classes=val_dataset.n_classes)
s = time_log()
s += f"[VAL] -------- [{current_epoch}/{max_epoch} (iters: {current_iter})]--------\n"
s += f"[VAL] epoch: {current_epoch}, iters: {current_iter}\n"
s += f"[VAL] loss: {valid_loss:.6f}\n"
metric = "All"
prev_best_metric = best_metric
if best_metric <= (valid_metrics["Cluster_mIoU"] + valid_metrics["Cluster_Accuracy"] + valid_metrics["Linear_mIoU"] + valid_metrics["Linear_Accuracy"]):
best_metric = (valid_metrics["Cluster_mIoU"] + valid_metrics["Cluster_Accuracy"] + valid_metrics["Linear_mIoU"] + valid_metrics["Linear_Accuracy"])
best_epoch = current_epoch
best_iter = current_iter
s += f"[VAL] -------- updated ({metric})! {prev_best_metric:.6f} -> {best_metric:.6f}\n"
save_checkpoint(
"best", net_model, net_optimizer,
linear_model, linear_probe_optimizer,
cluster_model, cluster_probe_optimizer,
current_epoch, current_iter, best_metric, wandb_save_dir, model_only=True)
print ("SAVED CHECKPOINT: BEST")
for metric_k, metric_v in valid_metrics.items():
s += f"[VAL] {metric_k} : {best_valid_metrics[metric_k]:.6f} -> {metric_v:.6f}\n"
best_valid_metrics.update(valid_metrics)
else:
now_metric = valid_metrics["Cluster_mIoU"] + valid_metrics["Cluster_Accuracy"] + valid_metrics["Linear_mIoU"] + valid_metrics["Linear_Accuracy"]
s += f"[VAL] -------- not updated ({metric})." \
f" (now) {now_metric:.6f} vs (best) {prev_best_metric:.6f}\n"
s += f"[VAL] previous best was at {best_epoch} epoch, {best_iter} iters\n"
for metric_k, metric_v in valid_metrics.items():
s += f"[VAL] {metric_k} : {metric_v:.6f} vs {best_valid_metrics[metric_k]:.6f}\n"
save_checkpoint(
"lastest", net_model, net_optimizer,
linear_model, linear_probe_optimizer,
cluster_model, cluster_probe_optimizer,
current_epoch, current_iter, best_metric, wandb_save_dir, model_only=True)
print(s)
valid_metrics.update({"iters": current_iter, "valid_loss": valid_loss})
wandb.log(valid_metrics)
net_model.train()
linear_model.train()
cluster_model.train()
train_stats.reset()
_ = timer.update()
checkpoint_loaded = torch.load(f"{wandb_save_dir}/best.pth", map_location=device)
net_model.load_state_dict(checkpoint_loaded['net_model_state_dict'], strict=True)
linear_model.load_state_dict(checkpoint_loaded['linear_model_state_dict'], strict=True)
cluster_model.load_state_dict(checkpoint_loaded['cluster_model_state_dict'], strict=True)
loss_out, metrics_out = evaluate(net_model, linear_model,
cluster_model, val_loader, device=device, opt=opt, n_classes=train_dataset.n_classes)
s = time_log()
for metric_k, metric_v in metrics_out.items():
s += f"[before CRF] {metric_k} : {metric_v:.2f}\n"
print(s)
checkpoint_loaded = torch.load(f"{wandb_save_dir}/best.pth", map_location=device)
net_model.load_state_dict(checkpoint_loaded['net_model_state_dict'], strict=True)
linear_model.load_state_dict(checkpoint_loaded['linear_model_state_dict'], strict=True)
cluster_model.load_state_dict(checkpoint_loaded['cluster_model_state_dict'], strict=True)
loss_out, metrics_out = evaluate(net_model, linear_model, cluster_model,
val_loader, device=device, opt=opt, n_classes=train_dataset.n_classes, is_crf=opt["eval"]["is_crf"])
s = time_log()
for metric_k, metric_v in metrics_out.items():
s += f"[after CRF] {metric_k} : {metric_v:.2f}\n"
print(s)
wandb.finish()
print(f"-------- Train Finished --------")
def evaluate(net_model: nn.Module,
linear_model: nn.Module,
cluster_model: nn.Module,
eval_loader: DataLoader,
device: torch.device,
opt: Dict,
n_classes: int,
is_crf: bool = False,
data_type: str = "",
) -> Tuple[float, Dict[str, float]]:
net_model.eval()
cluster_metrics = UnsupervisedMetrics(
"Cluster_", n_classes, opt["eval"]["extra_clusters"], True)
linear_metrics = UnsupervisedMetrics(
"Linear_", n_classes, 0, False)
with torch.no_grad():
eval_stats = RunningAverage()
for i, data in enumerate(tqdm(eval_loader)):
img: torch.Tensor = data['img'].to(device, non_blocking=True)
label: torch.Tensor = data['label'].to(device, non_blocking=True)
with torch.cuda.amp.autocast(enabled=True):
output = net_model(img)
head_code = output[1]
head_code = F.interpolate(head_code, label.shape[-2:], mode='bilinear', align_corners=False)
if is_crf:
with torch.cuda.amp.autocast(enabled=True):
linear_preds = torch.log_softmax(linear_model(head_code), dim=1)
with torch.cuda.amp.autocast(enabled=True):
cluster_loss, cluster_preds = cluster_model(head_code, 2, log_probs=True, is_direct=opt["eval"]["is_direct"])
linear_preds = batched_crf(img, linear_preds).argmax(1).cuda()
cluster_preds = batched_crf(img, cluster_preds).argmax(1).cuda()
else:
with torch.cuda.amp.autocast(enabled=True):
linear_preds = linear_model(head_code).argmax(1)
with torch.cuda.amp.autocast(enabled=True):
cluster_loss, cluster_preds = cluster_model(head_code, None, is_direct=opt["eval"]["is_direct"])
cluster_preds = cluster_preds.argmax(1)
linear_metrics.update(linear_preds, label)
cluster_metrics.update(cluster_preds, label)
eval_stats.append(cluster_loss)
eval_metrics = get_metrics(cluster_metrics, linear_metrics)
return eval_stats.avg, eval_metrics
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--opt", type=str, required=True, help="Path to option JSON file.")
parser.add_argument("--test", action="store_true", help="Test mode, no WandB, highest priority.")
parser.add_argument("--debug", action="store_true", help="Debug mode, no WandB, second highest priority.")
parser.add_argument("--checkpoint", type=str, default=None, help="Checkpoint override")
parser.add_argument("--data_path", type=str, default=None, help="Data path override")
parser_args = parser.parse_args()
parser_opt = parse(parser_args.opt)
if parser_args.checkpoint is not None:
parser_opt["checkpoint"] = parser_args.checkpoint
if parser_args.data_path is not None:
parser_opt["dataset"]["data_path"] = parser_args.data_path
run(parser_opt, is_test=parser_args.test, is_debug=parser_args.debug)
if __name__ == "__main__":
main()