forked from dhwajraj/deep-siamese-text-similarity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
input_helpers.py
219 lines (202 loc) · 8.04 KB
/
input_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import numpy as np
import re
import itertools
from collections import Counter
import numpy as np
import time
import gc
from tensorflow.contrib import learn
from gensim.models.word2vec import Word2Vec
import gzip
from random import random
from preprocess import MyVocabularyProcessor
import sys
reload(sys)
sys.setdefaultencoding("utf-8")
class InputHelper(object):
pre_emb = dict()
vocab_processor = None
def cleanText(self, s):
s = re.sub(r"[^\x00-\x7F]+"," ", s)
s = re.sub(r'[\~\!\`\^\*\{\}\[\]\#\<\>\?\+\=\-\_\(\)]+',"",s)
s = re.sub(r'( [0-9,\.]+)',r"\1 ", s)
s = re.sub(r'\$'," $ ", s)
s = re.sub('[ ]+',' ', s)
return s.lower()
def getVocab(self,vocab_path, max_document_length,filter_h_pad):
if self.vocab_processor==None:
print('locading vocab')
vocab_processor = MyVocabularyProcessor(max_document_length-filter_h_pad,min_frequency=0)
self.vocab_processor = vocab_processor.restore(vocab_path)
return self.vocab_processor
def loadW2V(self,emb_path, type="bin"):
print("Loading W2V data...")
num_keys = 0
if type=="textgz":
# this seems faster than gensim non-binary load
for line in gzip.open(emb_path):
l = line.strip().split()
st=l[0].lower()
self.pre_emb[st]=np.asarray(l[1:])
num_keys=len(self.pre_emb)
if type=="text":
# this seems faster than gensim non-binary load
for line in open(emb_path):
l = line.strip().split()
st=l[0].lower()
self.pre_emb[st]=np.asarray(l[1:])
num_keys=len(self.pre_emb)
else:
self.pre_emb = Word2Vec.load_word2vec_format(emb_path,binary=True)
self.pre_emb.init_sims(replace=True)
num_keys=len(self.pre_emb.vocab)
print("loaded word2vec len ", num_keys)
gc.collect()
def deletePreEmb(self):
self.pre_emb=dict()
gc.collect()
def getTsvData(self, filepath):
print("Loading training data from "+filepath)
x1=[]
x2=[]
y=[]
# positive samples from file
for line in open(filepath):
l=line.strip().split("\t")
if len(l)<2:
continue
if random() > 0.5:
x1.append(l[0].lower())
x2.append(l[1].lower())
else:
x1.append(l[1].lower())
x2.append(l[0].lower())
y.append(int(l[2]))
return np.asarray(x1),np.asarray(x2),np.asarray(y)
def getTsvDataCharBased(self, filepath):
print("Loading training data from "+filepath)
x1=[]
x2=[]
y=[]
# positive samples from file
for line in open(filepath):
l=line.strip().split("\t")
if len(l)<2:
continue
if random() > 0.5:
x1.append(l[0].lower())
x2.append(l[1].lower())
else:
x1.append(l[1].lower())
x2.append(l[0].lower())
y.append(1)#np.array([0,1]))
# generate random negative samples
combined = np.asarray(x1+x2)
shuffle_indices = np.random.permutation(np.arange(len(combined)))
combined_shuff = combined[shuffle_indices]
for i in xrange(len(combined)):
x1.append(combined[i])
x2.append(combined_shuff[i])
y.append(0) #np.array([1,0]))
return np.asarray(x1),np.asarray(x2),np.asarray(y)
def getTsvTestData(self, filepath):
print("Loading testing/labelled data from "+filepath)
x1=[]
x2=[]
y=[]
# positive samples from file
for line in open(filepath):
l=line.strip().split("\t")
if len(l)<3:
continue
x1.append(l[1].lower())
x2.append(l[2].lower())
y.append(int(l[0])) #np.array([0,1]))
return np.asarray(x1),np.asarray(x2),np.asarray(y)
def batch_iter(self, data, batch_size, num_epochs, shuffle=True):
"""
Generates a batch iterator for a dataset.
"""
data = np.asarray(data)
print(data)
print(data.shape)
data_size = len(data)
num_batches_per_epoch = int(len(data)/batch_size) + 1
for epoch in range(num_epochs):
# Shuffle the data at each epoch
if shuffle:
shuffle_indices = np.random.permutation(np.arange(data_size))
shuffled_data = data[shuffle_indices]
else:
shuffled_data = data
for batch_num in range(num_batches_per_epoch):
start_index = batch_num * batch_size
end_index = min((batch_num + 1) * batch_size, data_size)
yield shuffled_data[start_index:end_index]
def dumpValidation(self,x1_text,x2_text,y,shuffled_index,dev_idx,i):
print("dumping validation "+str(i))
x1_shuffled=x1_text[shuffled_index]
x2_shuffled=x2_text[shuffled_index]
y_shuffled=y[shuffled_index]
x1_dev=x1_shuffled[dev_idx:]
x2_dev=x2_shuffled[dev_idx:]
y_dev=y_shuffled[dev_idx:]
del x1_shuffled
del y_shuffled
with open('validation.txt'+str(i),'w') as f:
for text1,text2,label in zip(x1_dev,x2_dev,y_dev):
f.write(str(label)+"\t"+text1+"\t"+text2+"\n")
f.close()
del x1_dev
del y_dev
# Data Preparatopn
# ==================================================
def getDataSets(self, training_paths, max_document_length, percent_dev, batch_size, is_char_based):
if is_char_based:
x1_text, x2_text, y=self.getTsvDataCharBased(training_paths)
else:
x1_text, x2_text, y=self.getTsvData(training_paths)
# Build vocabulary
print("Building vocabulary")
vocab_processor = MyVocabularyProcessor(max_document_length,min_frequency=0,is_char_based=is_char_based)
vocab_processor.fit_transform(np.concatenate((x2_text,x1_text),axis=0))
print("Length of loaded vocabulary ={}".format( len(vocab_processor.vocabulary_)))
i1=0
train_set=[]
dev_set=[]
sum_no_of_batches = 0
x1 = np.asarray(list(vocab_processor.transform(x1_text)))
x2 = np.asarray(list(vocab_processor.transform(x2_text)))
# Randomly shuffle data
np.random.seed(131)
shuffle_indices = np.random.permutation(np.arange(len(y)))
x1_shuffled = x1[shuffle_indices]
x2_shuffled = x2[shuffle_indices]
y_shuffled = y[shuffle_indices]
dev_idx = -1*len(y_shuffled)*percent_dev//100
del x1
del x2
# Split train/test set
self.dumpValidation(x1_text,x2_text,y,shuffle_indices,dev_idx,0)
# TODO: This is very crude, should use cross-validation
x1_train, x1_dev = x1_shuffled[:dev_idx], x1_shuffled[dev_idx:]
x2_train, x2_dev = x2_shuffled[:dev_idx], x2_shuffled[dev_idx:]
y_train, y_dev = y_shuffled[:dev_idx], y_shuffled[dev_idx:]
print("Train/Dev split for {}: {:d}/{:d}".format(training_paths, len(y_train), len(y_dev)))
sum_no_of_batches = sum_no_of_batches+(len(y_train)//batch_size)
train_set=(x1_train,x2_train,y_train)
dev_set=(x1_dev,x2_dev,y_dev)
gc.collect()
return train_set,dev_set,vocab_processor,sum_no_of_batches
def getTestDataSet(self, data_path, vocab_path, max_document_length):
x1_temp,x2_temp,y = self.getTsvTestData(data_path)
# Build vocabulary
vocab_processor = MyVocabularyProcessor(max_document_length,min_frequency=0)
vocab_processor = vocab_processor.restore(vocab_path)
print len(vocab_processor.vocabulary_)
x1 = np.asarray(list(vocab_processor.transform(x1_temp)))
x2 = np.asarray(list(vocab_processor.transform(x2_temp)))
# Randomly shuffle data
del vocab_processor
gc.collect()
return x1,x2, y