-
Notifications
You must be signed in to change notification settings - Fork 0
/
dagan_networks_wgan_with_matchingclassifier.py
531 lines (451 loc) · 28.9 KB
/
dagan_networks_wgan_with_matchingclassifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
import tensorflow as tf
from dagan_architectures_with_matchingclassifier import UResNetGenerator, Discriminator
import numpy as np
import time
def Hinge_loss(real_logits, fake_logits):
D_loss = -tf.reduce_mean(tf.minimum(0., -1.0 + real_logits)) - tf.reduce_mean(tf.minimum(0., -1.0 - fake_logits))
G_loss = -tf.reduce_mean(fake_logits)
return D_loss, G_loss
class DAGAN:
def __init__(self, input_x_i, input_x_j, input_y_i, input_y_j, input_global_y_i, input_global_y_j,
input_x_j_selected, input_global_y_j_selected, classes, dropout_rate, generator_layer_sizes,
discriminator_layer_sizes, generator_layer_padding, z_inputs, z_inputs_2, matching, fce,
full_context_unroll_k, average_per_class_embeddings, batch_size=100, z_dim=100,
num_channels=1, is_training=True, augment=True, discr_inner_conv=0, gen_inner_conv=0, num_gpus=1,
is_z2=True, is_z2_vae=True,
use_wide_connections=False, selected_classes=5, support_num=5, loss_G=1, loss_D=1, loss_KL=0.0001,
loss_recons_B=0.01, loss_matching_G=0.01, loss_matching_D=0.01, loss_CLA=1, loss_FSL=1, loss_sim=0.01,
z1z2_training=True):
"""
Initializes a DAGAN object.
:param input_x_i: Input image x_i
:param input_x_j: Input image x_j
:param dropout_rate: A dropout rate placeholder or a scalar to use throughout the network
:param generator_layer_sizes: A list with the number of feature maps per layer (generator) e.g. [64, 64, 64, 64]
:param discriminator_layer_sizes: A list with the number of feature maps per layer (discriminator)
e.g. [64, 64, 64, 64]
:param generator_layer_padding: A list with the type of padding per layer (e.g. ["SAME", "SAME", "SAME","SAME"]
:param z_inputs: A placeholder for the random noise injection vector z (usually gaussian or uniform distribut.)
:param batch_size: An integer indicating the batch size for the experiment.
:param z_dim: An integer indicating the dimensionality of the random noise vector (usually 100-dim).
:param num_channels: Number of image channels
:param is_training: A boolean placeholder for the training/not training flag
:param augment: A boolean placeholder that determines whether to augment the data using rotations
:param discr_inner_conv: Number of inner layers per multi layer in the discriminator
:param gen_inner_conv: Number of inner layers per multi layer in the generator
:param num_gpus: Number of GPUs to use for training
"""
self.training = False
self.print = False
self.batch_size = batch_size
self.z_dim = z_dim
self.z_inputs = z_inputs
self.z_inputs_2 = z_inputs_2
self.num_gpus = num_gpus
self.support_num = support_num
self.loss_G = loss_G
self.loss_D = loss_D
self.loss_KL = loss_KL
self.loss_CLA = loss_CLA
self.loss_FSL = loss_FSL
self.loss_matching_G = loss_matching_G
self.loss_recons_B = loss_recons_B
self.loss_matching_D = loss_matching_D
self.loss_sim = loss_sim
self.input_x_i = input_x_i
self.input_x_j = input_x_j
self.input_x_j_selected = input_x_j_selected
self.input_y_i = input_y_i
self.input_y_j = input_y_j
self.input_global_y_i = input_global_y_i
self.input_global_y_j = input_global_y_j
self.input_global_y_j_selected = input_global_y_j_selected
self.classes = classes
self.selected_classes = selected_classes
self.dropout_rate = dropout_rate
self.training_phase = is_training
self.augment = augment
self.is_z2 = is_z2
self.is_z2_vae = is_z2_vae
self.z1z2_training = z1z2_training
self.g = UResNetGenerator(batch_size=self.batch_size, layer_sizes=generator_layer_sizes,
num_channels=num_channels, layer_padding=generator_layer_padding,
inner_layers=gen_inner_conv, name="generator", matching=matching, fce=fce,
full_context_unroll_k=full_context_unroll_k,
average_per_class_embeddings=average_per_class_embeddings)
self.d = Discriminator(batch_size=self.batch_size, layer_sizes=discriminator_layer_sizes,
inner_layers=discr_inner_conv, use_wide_connections=use_wide_connections,
name="discriminator")
def rotate_data(self, image_a, image_b):
"""
Rotate 2 images by the same number of degrees
:param image_a: An image a to rotate k degrees
:param image_b: An image b to rotate k degrees
:return: Two images rotated by the same amount of degrees
"""
random_variable = tf.unstack(tf.random_uniform([1], minval=0, maxval=4, dtype=tf.int32, seed=None, name=None))
image_a = tf.image.rot90(image_a, k=random_variable[0])
image_b = tf.image.rot90(image_b, k=random_variable[0])
return [image_a, image_b]
def rotate_batch(self, batch_images_a, batch_images_b):
"""
Rotate two batches such that every element from set a with the same index as an element from set b are rotated
by an equal amount of degrees
:param batch_images_a: A batch of images to be rotated
:param batch_images_b: A batch of images to be rotated
:return: A batch of images that are rotated by an element-wise equal amount of k degrees
"""
shapes = map(int, list(batch_images_a.get_shape()))
batch_size, x, y, c = shapes
with tf.name_scope('augment'):
batch_images_unpacked_a = tf.unstack(batch_images_a)
batch_images_unpacked_b = tf.unstack(batch_images_b)
new_images_a = []
new_images_b = []
for image_a, image_b in zip(batch_images_unpacked_a, batch_images_unpacked_b):
rotate_a, rotate_b = self.augment_rotate(image_a, image_b)
new_images_a.append(rotate_a)
new_images_b.append(rotate_b)
new_images_a = tf.stack(new_images_a)
new_images_a = tf.reshape(new_images_a, (batch_size, x, y, c))
new_images_b = tf.stack(new_images_b)
new_images_b = tf.reshape(new_images_b, (batch_size, x, y, c))
return [new_images_a, new_images_b]
def generate(self, conditional_images, support_input, input_global_x_j_selected, input_y_i, input_y_j,
input_global_y_i, input_global_y_j_selected, selected_classes, support_num, classes, is_z2, is_z2_vae,
z_input=None, z_input_2=None):
"""
Generate samples with the DAGAN
:param conditional_images: Images to condition DAGAN on.
:param z_input: Random noise to condition the DAGAN on. If none is used then the method will generate random
noise with dimensionality [batch_size, z_dim]
:return: A batch of generated images, one per conditional image
"""
if z_input is None:
z_input = tf.random_normal([self.batch_size, self.z_dim], mean=0, stddev=1)
z_input_2 = tf.random_normal([self.batch_size, self.z_dim], mean=0, stddev=1)
if self.training:
generated_samples, z1, matching_feature, similarities, similarities_data, loss_recg, KL_loss, reconstruction_loss, crossentropy_loss_real, crossentropy_loss_fake, accuracy_real, accuracy_fake, preds_fake = self.g(
z_input, z_input_2,
conditional_images, support_input, input_y_i, input_y_j, selected_classes, support_num, is_z2,
is_z2_vae,
training=self.training_phase,
dropout_rate=self.dropout_rate,
z1z2_training=self.z1z2_training,
z_dim=self.z_dim)
return generated_samples, z1, matching_feature, similarities, similarities_data, z_input, z_input_2, loss_recg, KL_loss, reconstruction_loss, crossentropy_loss_real, crossentropy_loss_fake, accuracy_real, accuracy_fake, preds_fake
else:
generated_samples, similarities, similarities_data, crossentropy_loss_real, crossentropy_loss_fake, accuracy_real, accuracy_fake, preds_fake = self.g(
z_input, z_input_2,
conditional_images, support_input, input_y_i, input_y_j, selected_classes, support_num, is_z2,
is_z2_vae,
training=self.training_phase,
dropout_rate=self.dropout_rate,
z1z2_training=self.z1z2_training,
z_dim=self.z_dim)
similarities_onehot = tf.cast((0) * tf.ones_like(similarities[:, 0]), dtype=tf.int32)
similarities_onehot = tf.expand_dims(similarities_onehot, axis=-1)
similarities_index = tf.expand_dims(similarities[:, 0], axis=-1)
g_same_class_outputs = self.d(generated_samples, similarities_onehot, similarities_index, input_global_x_j_selected, input_global_y_i,
input_global_y_j_selected, selected_classes, support_num, classes,
similarities, training=self.training_phase,
dropout_rate=self.dropout_rate)
return generated_samples, similarities, g_same_class_outputs, preds_fake
def augment_rotate(self, image_a, image_b):
r = tf.unstack(tf.random_uniform([1], minval=0, maxval=2, dtype=tf.int32, seed=None, name=None))
rotate_boolean = tf.equal(0, r, name="check-rotate-boolean")
[image_a, image_b] = tf.cond(rotate_boolean[0], lambda: self.rotate_data(image_a, image_b),
lambda: [image_a, image_b])
return image_a, image_b
def data_augment_batch(self, batch_images_a, batch_images_b):
"""
Apply data augmentation to a set of image batches if self.augment is set to true
:param batch_images_a: A batch of images to augment
:param batch_images_b: A batch of images to augment
:return: A list of two augmented image batches
"""
[images_a, images_b] = tf.cond(self.augment, lambda: self.rotate_batch(batch_images_a, batch_images_b),
lambda: [batch_images_a, batch_images_b])
return images_a, images_b
def save_features(self, name, features):
"""
Save feature activations from a network
:param name: A name for the summary of the features
:param features: The features to save
"""
for i in range(len(features)):
shape_in = features[i].get_shape().as_list()
channels = shape_in[3]
y_channels = 8
x_channels = channels / y_channels
activations_features = tf.reshape(features[i], shape=(shape_in[0], shape_in[1], shape_in[2],
y_channels, x_channels))
activations_features = tf.unstack(activations_features, axis=4)
activations_features = tf.concat(activations_features, axis=2)
activations_features = tf.unstack(activations_features, axis=3)
activations_features = tf.concat(activations_features, axis=1)
activations_features = tf.expand_dims(activations_features, axis=3)
# tf.summary.image('{}_{}'.format(name, i), activations_features)
def loss(self, gpu_id):
"""
Builds models, calculates losses, saves tensorboard information.
:param gpu_id: The GPU ID to calculate losses for.
:return: Returns the generator and discriminator losses.
"""
#### general matching procedure
with tf.name_scope("losses_{}".format(gpu_id)):
before_loss = time.time()
epsilon = 1e-8
input_a, input_b, input_y_a, input_y_b, input_global_y_a, input_global_y_b, input_b_selected, input_global_y_b_selected = \
self.input_x_i[gpu_id], self.input_x_j[gpu_id], self.input_y_i[gpu_id], self.input_y_j[gpu_id], \
self.input_global_y_i[gpu_id], self.input_global_y_j[gpu_id], self.input_x_j_selected[gpu_id], \
self.input_global_y_j_selected[gpu_id]
# input_a_expand = tf.expand_dims(input_a,1)
# input_a_copy = tf.tile(input_a_expand,[1,self.support_num,1,1,1])
# current_support = tf.cond(self.z1z2_training,lambda:input_a_copy,lambda:input_b)
current_support = input_b
x_g, z1, matching_feature, similarities, similarities_data, z_input, z_input_2, recg_loss, KL_loss, \
reconstruction_loss, crossentropy_loss_real, crossentropy_loss_fake, accuracy_real, accuracy_fake, preds_fake = \
self.generate(input_a, current_support, input_b_selected, input_y_a, input_y_b, input_global_y_a,
input_global_y_b_selected, self.selected_classes, self.support_num, self.classes,
self.is_z2, self.is_z2_vae)
similarities_minimun = tf.reduce_min(similarities, axis=1)
one = tf.ones_like(similarities_minimun)
zero = tf.zeros_like(similarities_minimun)
similarities_mask = tf.where(similarities_minimun < 0, x=zero, y=one)
labels = tf.ones_like(similarities)
similarities_loss = -tf.reduce_mean(similarities_minimun)
feature_total = []
similarities_onehot = tf.cast((0) * tf.ones_like(similarities[:, 0]), dtype=tf.int32)
similarities_onehot = tf.expand_dims(similarities_onehot, axis=-1)
similarities_index = tf.expand_dims(similarities[:, 0], axis=-1)
g_feature, g_same_class_outputs, g_classification_loss, g_classification_accuracy, z_feature_false = self.d(
x_g, similarities_onehot, similarities_index,
input_global_y_a, input_global_y_b_selected,
self.selected_classes, self.support_num,
self.classes, similarities, z1,
training=self.training_phase,
dropout_rate=self.dropout_rate)
t_feature_total = []
t_same_class_outputs_total = []
t_classification_loss_total = []
for s in range(self.support_num*self.selected_classes):
similarities_onehot = tf.cast((s) * tf.ones_like(similarities[:, s]), dtype=tf.int32)
similarities_onehot = tf.expand_dims(similarities_onehot, axis=-1)
similarities_index = tf.expand_dims(similarities[:, s], axis=-1)
t_feature, t_same_class_outputs, t_classification_loss, t_classification_accuracy, z_feature_true = self.d(
input_b[:, s], similarities_onehot, similarities_index,
input_global_y_b[:,s], input_global_y_b_selected,
self.selected_classes, self.support_num,
self.classes, similarities, z1,
training=self.training_phase,
dropout_rate=self.dropout_rate)
feature_total.append(t_feature)
t_same_class_outputs_total.append(t_same_class_outputs)
t_classification_loss_total.append(t_classification_loss)
# feature_total = tf.stack(feature_total, axis=1)
# feature_total = self.g.classify(similarities, support_set_y=feature_total, name='classify')
# feature_loss = tf.reduce_mean(tf.square(feature_total - g_feature))
feature_total = tf.stack(feature_total, axis=1)
feature_total_reshape = tf.reshape(feature_total,
[feature_total.get_shape()[0], feature_total.get_shape()[1],
feature_total.get_shape()[2] * \
feature_total.get_shape()[3] * feature_total.get_shape()[4]])
feature_total_reshape = self.g.classify(similarities, support_set_y=feature_total_reshape, name='classify')
feature_total = tf.reshape(feature_total_reshape,
[feature_total.get_shape()[0], feature_total.get_shape()[2],
feature_total.get_shape()[3], feature_total.get_shape()[4]])
feature_loss = tf.reduce_mean(tf.abs(feature_total - g_feature))
t_same_class_outputs = tf.concat(t_same_class_outputs_total, axis=0)
# t_same_class_outputs = tf.stack(t_same_class_outputs_total,axis=1)
# t_same_class_outputs = self.g.classify(similarities, support_set_y=t_same_class_outputs, name='classify')
t_classification_loss = tf.concat(t_classification_loss_total, axis=0)
d_fake = g_same_class_outputs
d_real = t_same_class_outputs
d_loss_pure, G_loss = Hinge_loss(d_real, d_fake)
if self.print:
# similarities = tf.Print(similarities,[similarities],'similarities')
# similarities_l1_loss = tf.Print(similarities_l1_loss,[similarities_l1_loss],'similarities_l1_loss')
# g_same_class_outputs = tf.Print(g_classification_loss,[g_same_class_outputs],'the probability of the generated image')
# t_same_class_outputs = tf.Print(t_same_class_outputs,[t_same_class_outputs],'the probability of the real image')
#### generator
# similarities_mask = tf.Print(similarities_mask,[similarities_mask],'similarity mask')
g_classification_loss = tf.Print(g_classification_loss, [g_classification_loss], 'classification_loss',
summarize=5)
reconstruction_loss = tf.Print(reconstruction_loss, [reconstruction_loss], 'l1_reconstruction_loss',
summarize=5)
feature_loss = tf.Print(feature_loss, [feature_loss], 'matching_D_loss', summarize=5)
d_loss_pure = tf.Print(d_loss_pure, [d_loss_pure], 'D_loss', summarize=5)
G_loss = tf.Print(G_loss, [G_loss], 'G_loss', summarize=5)
##### without mask
loss_KL = tf.reduce_mean(KL_loss)
loss_recg = tf.reduce_mean(recg_loss)
loss_reconstruction = tf.reduce_mean(reconstruction_loss)
# loss_reconstruction_randomz1 = tf.reduce_mean(reconstruction_loss_randomz1)
# crossentropy_loss_fake = tf.reduce_mean(crossentropy_loss_fake)
loss_feature = tf.reduce_mean(feature_loss)
g_classification_loss = tf.reduce_mean(g_classification_loss)
t_classification_loss = tf.reduce_mean(t_classification_loss)
g_loss_z1z2_training = self.loss_recons_B * loss_reconstruction
g_loss_z1z2_notraining = G_loss * self.loss_G + g_classification_loss * self.loss_CLA + self.loss_recons_B * loss_reconstruction + \
self.loss_matching_D * loss_feature
# g_loss = tf.cond(self.z1z2_training, lambda: g_loss_z1z2_training,
# lambda: g_loss_z1z2_notraining)
g_loss = g_loss_z1z2_notraining
# recons_loss = self.loss_recons_B*loss_reconstruction + self.loss_KL*loss_KL
# g_loss_z1z2_notraining = -tf.reduce_mean(d_fake*similarities_mask)*self.loss_G - g_classification_loss*self.loss_CLA - \
# self.loss_matching_G* loss_recg - self.loss_recons_B*loss_reconstruction_randomz1 - self.loss_FSL * crossentropy_loss_fake - self.loss_matching_D * loss_feature
# g_loss_z1z2_notraining = -tf.reduce_mean(d_fake)*self.loss_G - g_classification_loss*self.loss_CLA - \
# self.loss_recons_S * loss_recg
# g_loss = g_loss_z1z2_notraining
# alpha = tf.random_uniform(
# shape=[self.batch_size, 1],
# minval=0.,
# maxval=1.
# )
# input_shape = input_a.get_shape()
# input_shape = [int(n) for n in input_shape]
# differences_g = x_g - input_a
# differences_g = tf.reshape(differences_g, (self.batch_size, input_shape[1]*input_shape[2]*input_shape[3]))
# interpolates_g = input_a + tf.reshape(alpha * differences_g, (self.batch_size, input_shape[1],
# input_shape[2], input_shape[3]))
# interpolated_feature, pre_grads, pre_classification_loss, pre_classification_acc,_ = self.d(interpolates_g, input_b_selected,input_global_y_a,input_global_y_b_selected,self.selected_classes,self.support_num, self.classes, similarities, z1, dropout_rate=self.dropout_rate,
# training=self.training_phase)
# # interpolated_feature, pre_grads = self.d(interpolates_g, input_b, input_global_y_a,input_global_y_b_selected,self.selected_classes,self.support_num, self.classes, similarities, dropout_rate=self.dropout_rate,
# # training=self.training_phase)
# gradients = tf.gradients(tf.reduce_mean(pre_grads,axis=[1,2,3]), interpolates_g)[0]
# slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), reduction_indices=[1]))
# gradient_penalty = tf.reduce_mean((slopes - 1.) ** 2)
# if self.print:
# gradient_penalty = tf.Print(gradient_penalty,[gradient_penalty],'gradient_penalty')
d_loss = self.loss_D * (d_loss_pure) + self.loss_CLA * t_classification_loss
# tf.add_to_collection('fzl_losses',crossentropy_loss_real)
tf.add_to_collection('g_losses', g_loss)
tf.add_to_collection('d_losses', d_loss)
tf.add_to_collection('c_losses', t_classification_loss)
# tf.add_to_collection('recons_loss', recons_loss)
tf.summary.scalar('G_losses', G_loss)
tf.summary.scalar('D_losses', d_loss_pure)
tf.summary.scalar('total_g_losses', g_loss)
tf.summary.scalar('total_d_losses', d_loss)
tf.summary.scalar('c_losses', g_classification_loss)
tf.summary.scalar('reconstruction_losses', loss_reconstruction)
tf.summary.scalar('matchingD_losses', loss_feature)
return {
"g_losses": tf.add_n(tf.get_collection('g_losses'), name='total_g_loss'),
"d_losses": tf.add_n(tf.get_collection('d_losses'), name='total_d_loss'),
"c_losses": tf.add_n(tf.get_collection('c_losses'), name='total_c_loss'),
# "fzl_losses":tf.add_n(tf.get_collection('fzl_losses'),name='total_fzl_loss'),
# "recons_losses":tf.add_n(tf.get_collection('recons_losses'),name='total_recons_loss'),
}
def train(self, opts, losses):
"""
Returns ops for training our DAGAN system.
:param opts: A dict with optimizers.
:param losses: A dict with losses.
:return: A dict with training ops for the dicriminator and the generator.
"""
opt_ops = dict()
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
opt_ops["g_opt_op"] = opts["g_opt"].minimize(losses["g_losses"],
var_list=self.g.variables,
colocate_gradients_with_ops=True)
opt_ops["d_opt_op"] = opts["d_opt"].minimize(losses["d_losses"],
var_list=self.d.variables_d,
colocate_gradients_with_ops=True)
opt_ops["c_opt_op"] = opts["c_opt"].minimize(losses['c_losses'], var_list=self.d.variables_c,
colocate_gradients_with_ops=True)
# opt_ops["fzl_opt_op"] = opts["fzl_opt"].minimize(losses['fzl_losses'], var_list=self.g.variables_fzl,
# colocate_gradients_with_ops=True)
# opt_ops["recons_opt_op"] = opts["recons_opt"].minimize(losses['recons_losses'], var_list=self.g.variables,
# colocate_gradients_with_ops=True)
return opt_ops
def init_train(self, learning_rate=1e-4, beta1=0.0, beta2=0.9):
"""
Initialize training by constructing the summary, loss and ops
:param learning_rate: The learning rate for the Adam optimizer
:param beta1: Beta1 for the Adam optimizer
:param beta2: Beta2 for the Adam optimizer
:return: summary op, losses and training ops.
"""
losses = dict()
opts = dict()
if self.num_gpus > 0:
device_ids = ['/gpu:{}'.format(i) for i in range(self.num_gpus)]
else:
device_ids = ['/cpu:0']
for gpu_id, device_id in enumerate(device_ids):
with tf.device(device_id):
total_losses = self.loss(gpu_id=gpu_id)
for key, value in total_losses.items():
if key not in losses.keys():
losses[key] = [value]
else:
losses[key].append(value)
for key in list(losses.keys()):
losses[key] = tf.reduce_mean(losses[key], axis=0)
opts[key.replace("losses", "opt")] = tf.train.AdamOptimizer(beta1=beta1, beta2=beta2,
learning_rate=learning_rate)
# opts[key.replace("losses", "opt")] = tf.train.RMSPropOptimizer(learning_rate=learning_rate)
summary = tf.summary.merge_all()
apply_grads_ops = self.train(opts=opts, losses=losses)
return summary, losses, apply_grads_ops
def sample_same_images(self):
"""
Samples images from the DAGAN using input_x_i as image
conditional input and z_inputs as the gaussian noise.
:return: Inputs and generated images
"""
conditional_inputs = self.input_x_i[0]
support_input = self.input_x_j[0]
input_global_y_i = self.input_global_y_i[0]
input_global_x_j_selected = self.input_x_j_selected[0]
input_y_i = self.input_y_i[0]
input_y_j = self.input_y_j[0]
input_global_y_j = self.input_global_y_j[0]
input_global_y_j_selected = self.input_global_y_j_selected[0]
classes = self.classes
#### calculating the d_loss for score of selected samples
if self.training:
generated, f_encode_z, matching_feature, similarities, similarities_data, z_input, z_input_2, loss_recg, KL_loss, reconstruction_loss, crossentropy_loss_real, crossentropy_loss_fake, accuracy_real, accuracy_fake, preds_fake = \
self.generate(conditional_images=conditional_inputs,
support_input=support_input,
input_global_y_i=input_global_y_i,
input_global_x_j_selected=input_global_x_j_selected,
input_y_i=input_y_i,
input_y_j=input_y_j,
input_global_y_j_selected=input_global_y_j_selected,
selected_classes=self.selected_classes,
support_num=self.support_num,
classes=classes,
z_input=self.z_inputs,
z_input_2=self.z_inputs_2,
is_z2=self.is_z2,
is_z2_vae=self.is_z2_vae)
return self.input_x_i[0], self.input_x_j[
0], generated, input_y_i, input_global_y_i, similarities, f_encode_z, matching_feature
else:
generated, similarities, d_loss, preds_fake = self.generate(
conditional_images=conditional_inputs,
support_input=support_input,
input_global_y_i=input_global_y_i,
input_global_x_j_selected=input_global_x_j_selected,
input_y_i=input_y_i,
input_y_j=input_y_j,
input_global_y_j_selected=input_global_y_j_selected,
selected_classes=self.selected_classes,
support_num=self.support_num,
classes=classes,
z_input=self.z_inputs,
z_input_2=self.z_inputs_2,
is_z2=self.is_z2,
is_z2_vae=self.is_z2_vae)
# print('here',preds_fake) (16, 5)
# few_shot_fake_category = tf.argmax(preds_fake, axis=1)
# softmax = tf.nn.softmax(preds_fake)
# few_shot_confidence_score = tf.reduce_max(softmax, axis=1)
# print('11111',few_shot_fake_category) shape=(16,)
# print('22222',few_shot_confidence_score) shape=(16,)
return self.input_x_i[0], self.input_x_j[
0], generated, input_y_i, input_global_y_i, similarities, similarities, similarities