-
Notifications
You must be signed in to change notification settings - Fork 38
/
train_pytorch.py
221 lines (168 loc) · 7 KB
/
train_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import argparse
import math
import h5py
import numpy as np
import socket
import importlib
import matplotlib.pyplot as plt
import os
import sys
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(BASE_DIR, 'models'))
sys.path.append(os.path.join(BASE_DIR, 'utils'))
import provider
import math
import random
import data_utils
import time
import torch
from torch import nn
from torch.autograd import Variable
from torch.utils.data import Dataset, DataLoader
from utils.model import RandPointCNN
from utils.util_funcs import knn_indices_func_gpu, knn_indices_func_cpu
from utils.util_layers import Dense
random.seed(0)
dtype = torch.cuda.FloatTensor
# Load Hyperparameters
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]')
parser.add_argument('--model', default='pointnet_cls',
help='Model name: pointnet_cls or pointnet_cls_basic [default: pointnet_cls]')
parser.add_argument('--log_dir', default='log', help='Log dir [default: log]')
parser.add_argument('--num_point', type=int, default=1024, help='Point Number [256/512/1024/2048] [default: 1024]')
parser.add_argument('--max_epoch', type=int, default=2, help='Epoch to run [default: 250]')
parser.add_argument('--batch_size', type=int, default=32, help='Batch Size during training [default: 32]')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]')
parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]')
parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]')
parser.add_argument('--decay_step', type=int, default=200000, help='Decay step for lr decay [default: 200000]')
parser.add_argument('--decay_rate', type=float, default=0.7, help='Decay rate for lr decay [default: 0.8]')
FLAGS = parser.parse_args()
NUM_POINT = FLAGS.num_point
LEARNING_RATE = FLAGS.learning_rate
GPU_INDEX = FLAGS.gpu
MOMENTUM = FLAGS.momentum
MAX_NUM_POINT = 2048
DECAY_STEP = FLAGS.decay_step
DECAY_RATE = FLAGS.decay_rate
BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP = float(DECAY_STEP)
BN_DECAY_CLIP = 0.99
LEARNING_RATE_MIN = 0.00001
NUM_CLASS = 40
BATCH_SIZE = FLAGS.batch_size #32
NUM_EPOCHS = FLAGS.max_epoch
jitter = 0.01
jitter_val = 0.01
rotation_range = [0, math.pi / 18, 0, 'g']
rotation_rage_val = [0, 0, 0, 'u']
order = 'rxyz'
scaling_range = [0.05, 0.05, 0.05, 'g']
scaling_range_val = [0, 0, 0, 'u']
class modelnet40_dataset(Dataset):
def __init__(self, data, labels):
self.data = data
self.labels = labels
def __len__(self):
return len(self.data)
def __getitem__(self, i):
return self.data[i], self.labels[i]
# C_in, C_out, D, N_neighbors, dilution, N_rep, r_indices_func, C_lifted = None, mlp_width = 2
# (a, b, c, d, e) == (C_in, C_out, N_neighbors, dilution, N_rep)
# Abbreviated PointCNN constructor.
AbbPointCNN = lambda a, b, c, d, e: RandPointCNN(a, b, 3, c, d, e, knn_indices_func_gpu)
class Classifier(nn.Module):
def __init__(self):
super(Classifier, self).__init__()
self.pcnn1 = AbbPointCNN(3, 32, 8, 1, -1)
self.pcnn2 = nn.Sequential(
AbbPointCNN(32, 64, 8, 2, -1),
AbbPointCNN(64, 96, 8, 4, -1),
AbbPointCNN(96, 128, 12, 4, 120),
AbbPointCNN(128, 160, 12, 6, 120)
)
self.fcn = nn.Sequential(
Dense(160, 128),
Dense(128, 64, drop_rate=0.5),
Dense(64, NUM_CLASS, with_bn=False, activation=None)
)
def forward(self, x):
x = self.pcnn1(x)
if False:
print("Making graph...")
k = make_dot(x[1])
print("Viewing...")
k.view()
print("DONE")
assert False
x = self.pcnn2(x)[1] # grab features
logits = self.fcn(x)
logits_mean = torch.mean(logits, dim=1)
return logits_mean
print("------Building model-------")
model = Classifier().cuda()
print("------Successfully Built model-------")
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01, momentum = 0.9)
loss_fn = nn.CrossEntropyLoss()
global_step = 1
#model_save_dir = os.path.join(CURRENT_DIR, "models", "mnist2")
#os.makedirs(model_save_dir, exist_ok = True)
TRAIN_FILES = provider.getDataFiles(os.path.join(BASE_DIR, 'data/modelnet40_ply_hdf5_2048/train_files.txt'))
TEST_FILES = provider.getDataFiles(os.path.join(BASE_DIR, 'data/modelnet40_ply_hdf5_2048/test_files.txt'))
losses = []
accuracies = []
'''
if False:
latest_model = sorted(os.listdir(model_save_dir))[-1]
model.load_state_dict(torch.load(os.path.join(model_save_dir, latest_model)))
'''
for epoch in range(1, NUM_EPOCHS+1):
train_file_idxs = np.arange(0, len(TRAIN_FILES))
np.random.shuffle(train_file_idxs)
for fn in range(len(TRAIN_FILES)):
#log_string('----' + str(fn) + '-----')
current_data, current_label = provider.loadDataFile(TRAIN_FILES[train_file_idxs[fn]])
current_data = current_data[:, 0:NUM_POINT, :]
current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label))
current_label = np.squeeze(current_label)
file_size = current_data.shape[0]
num_batches = file_size // BATCH_SIZE
total_correct = 0
total_seen = 0
loss_sum = 0
if epoch > 1:
LEARNING_RATE *= decay_rate ** (global_step // decay_steps)
if LEARNING_RATE > LEARNING_RATE_MIN:
print("NEW LEARNING RATE:", LEARNING_RATE)
optimizer = torch.optim.SGD(model.parameters(), lr = LEARNING_RATE, momentum = 0.9)
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx + 1) * BATCH_SIZE
# Lable
label = current_label[start_idx:end_idx]
label = torch.from_numpy(label).long()
label = Variable(label, requires_grad=False).cuda()
# Augment batched point clouds by rotation and jittering
rotated_data = provider.rotate_point_cloud(current_data[start_idx:end_idx, :, :])
jittered_data = provider.jitter_point_cloud(rotated_data) # P_Sampled
P_sampled = jittered_data
F_sampled = np.zeros((BATCH_SIZE, NUM_POINT, 0))
optimizer.zero_grad()
t0 = time.time()
P_sampled = torch.from_numpy(P_sampled).float()
P_sampled = Variable(P_sampled, requires_grad=False).cuda()
#F_sampled = torch.from_numpy(F_sampled)
out = model((P_sampled, P_sampled))
loss = loss_fn(out, label)
loss.backward()
optimizer.step()
print("epoch: "+str(epoch) + " loss: "+str(loss.data[0]))
if global_step % 25 == 0:
loss_v = loss.data[0]
print("Loss:", loss_v)
else:
loss_v = 0
global_step += 1