-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
agent_executor.ts
228 lines (208 loc) Β· 7.24 KB
/
agent_executor.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import type { BaseLanguageModelInterface } from "@langchain/core/language_models/base";
import { ChainValues } from "@langchain/core/utils/types";
import { Tool, DynamicStructuredTool } from "@langchain/core/tools";
import { CallbackManagerForChainRun } from "@langchain/core/callbacks/manager";
import { BaseChain, ChainInputs } from "../../chains/base.js";
import {
BasePlanner,
BaseStepContainer,
BaseStepExecutor,
ListStepContainer,
LLMPlanner,
ChainStepExecutor,
} from "./base.js";
import { AgentExecutor } from "../../agents/executor.js";
import {
DEFAULT_STEP_EXECUTOR_HUMAN_CHAT_MESSAGE_TEMPLATE,
getPlannerChatPrompt,
} from "./prompt.js";
import { LLMChain } from "../../chains/llm_chain.js";
import { PlanOutputParser } from "./outputParser.js";
import { ChatAgent } from "../../agents/chat/index.js";
import { StructuredChatAgent } from "../../agents/index.js";
import { SerializedLLMChain } from "../../chains/serde.js";
/**
* A utility function to distiguish a dynamicstructuredtool over other tools.
* @param tool the tool to test
* @returns bool
*/
export function isDynamicStructuredTool(
tool: Tool | DynamicStructuredTool
): tool is DynamicStructuredTool {
// We check for the existence of the static lc_name method in the object's constructor
return (
// eslint-disable-next-line @typescript-eslint/no-explicit-any
typeof (tool.constructor as any).lc_name === "function" &&
// eslint-disable-next-line @typescript-eslint/no-explicit-any
(tool.constructor as any).lc_name() === "DynamicStructuredTool"
);
}
/**
* Interface for the input to the PlanAndExecuteAgentExecutor class. It
* extends ChainInputs and includes additional properties for the planner,
* step executor, step container, and input and output keys.
*/
export interface PlanAndExecuteAgentExecutorInput extends ChainInputs {
planner: BasePlanner;
stepExecutor: BaseStepExecutor;
stepContainer?: BaseStepContainer;
inputKey?: string;
outputKey?: string;
}
/**
* Class representing a plan-and-execute agent executor. This agent
* decides on the full sequence of actions upfront, then executes them all
* without updating the plan. This is suitable for complex or long-running
* tasks that require maintaining long-term objectives and focus.
*/
export class PlanAndExecuteAgentExecutor extends BaseChain {
static lc_name() {
return "PlanAndExecuteAgentExecutor";
}
private planner: BasePlanner;
private stepExecutor: BaseStepExecutor;
private stepContainer: BaseStepContainer = new ListStepContainer();
private inputKey = "input";
private outputKey = "output";
constructor(input: PlanAndExecuteAgentExecutorInput) {
super(input);
this.planner = input.planner;
this.stepExecutor = input.stepExecutor;
this.stepContainer = input.stepContainer ?? this.stepContainer;
this.inputKey = input.inputKey ?? this.inputKey;
this.outputKey = input.outputKey ?? this.outputKey;
}
get inputKeys() {
return [this.inputKey];
}
get outputKeys() {
return [this.outputKey];
}
/**
* Static method that returns a default planner for the agent. It creates
* a new LLMChain with a given LLM and a fixed prompt, and uses it to
* create a new LLMPlanner with a PlanOutputParser.
* @param llm The Large Language Model (LLM) used to generate responses.
* @returns A new LLMPlanner instance.
*/
static async getDefaultPlanner({
llm,
tools,
}: {
llm: BaseLanguageModelInterface;
tools: Tool[] | DynamicStructuredTool[];
}) {
const plannerLlmChain = new LLMChain({
llm,
prompt: await getPlannerChatPrompt(tools),
});
return new LLMPlanner(plannerLlmChain, new PlanOutputParser());
}
/**
* Static method that returns a default step executor for the agent. It
* creates a new ChatAgent from a given LLM and a set of tools, and uses
* it to create a new ChainStepExecutor.
* @param llm The Large Language Model (LLM) used to generate responses.
* @param tools The set of tools used by the agent.
* @param humanMessageTemplate The template for human messages. If not provided, a default template is used.
* @returns A new ChainStepExecutor instance.
*/
static getDefaultStepExecutor({
llm,
tools,
humanMessageTemplate = DEFAULT_STEP_EXECUTOR_HUMAN_CHAT_MESSAGE_TEMPLATE,
}: {
llm: BaseLanguageModelInterface;
tools: Tool[] | DynamicStructuredTool[];
humanMessageTemplate?: string;
}) {
let agent;
if (tools.length > 0 && isDynamicStructuredTool(tools[0])) {
agent = StructuredChatAgent.fromLLMAndTools(llm, tools, {
humanMessageTemplate,
inputVariables: ["previous_steps", "current_step", "agent_scratchpad"],
});
return new ChainStepExecutor(
AgentExecutor.fromAgentAndTools({
agent,
tools,
})
);
}
agent = ChatAgent.fromLLMAndTools(llm, tools as Tool[], {
humanMessageTemplate,
});
return new ChainStepExecutor(
AgentExecutor.fromAgentAndTools({
agent,
tools,
})
);
}
/**
* Static method that creates a new PlanAndExecuteAgentExecutor from a
* given LLM, a set of tools, and optionally a human message template. It
* uses the getDefaultPlanner and getDefaultStepExecutor methods to create
* the planner and step executor for the new agent executor.
* @param llm The Large Language Model (LLM) used to generate responses.
* @param tools The set of tools used by the agent.
* @param humanMessageTemplate The template for human messages. If not provided, a default template is used.
* @returns A new PlanAndExecuteAgentExecutor instance.
*/
static async fromLLMAndTools({
llm,
tools,
humanMessageTemplate,
}: {
llm: BaseLanguageModelInterface;
tools: Tool[] | DynamicStructuredTool[];
humanMessageTemplate?: string;
} & Omit<PlanAndExecuteAgentExecutorInput, "planner" | "stepExecutor">) {
const executor = new PlanAndExecuteAgentExecutor({
planner: await PlanAndExecuteAgentExecutor.getDefaultPlanner({
llm,
tools,
}),
stepExecutor: PlanAndExecuteAgentExecutor.getDefaultStepExecutor({
llm,
tools,
humanMessageTemplate,
}),
});
return executor;
}
/** @ignore */
async _call(
inputs: ChainValues,
runManager?: CallbackManagerForChainRun
): Promise<ChainValues> {
const plan = await this.planner.plan(inputs.input, runManager?.getChild());
if (!plan.steps?.length) {
throw new Error(
"Could not create and parse a plan to answer your question - please try again."
);
}
plan.steps[
plan.steps.length - 1
].text += ` The original question was: ${inputs.input}.`;
for (const step of plan.steps) {
const newInputs = {
...inputs,
previous_steps: JSON.stringify(this.stepContainer.getSteps()),
current_step: step.text,
};
const response = await this.stepExecutor.step(
newInputs,
runManager?.getChild()
);
this.stepContainer.addStep(step, response);
}
return { [this.outputKey]: this.stepContainer.getFinalResponse() };
}
_chainType() {
return "agent_executor" as const;
}
serialize(): SerializedLLMChain {
throw new Error("Cannot serialize an AgentExecutor");
}
}