-
Notifications
You must be signed in to change notification settings - Fork 1
/
PascalVoc2COCO.py
294 lines (252 loc) · 11.1 KB
/
PascalVoc2COCO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# Convert pascalvoc to MScoco
# 需要将所有的.xml放在Annotations文件下
# -*- coding:utf-8 -*-
# !/usr/bin/env python
# hx
import json
import cv2
import numpy as np
import glob
import PIL.Image
import os,sys
class PascalVOC2coco(object):
def __init__(self, xml=[], save_json_path='./new.json'):
'''
:param xml: 所有Pascal VOC的xml文件路径组成的列表
:param save_json_path: json保存位置
'''
self.xml = xml
self.save_json_path = save_json_path
self.images = []
self.categories = []
self.annotations = []
# self.data_coco = {}
self.label = []
self.annID = 1
self.height = 0
self.width = 0
self.ob = []
self.save_json()
def data_transfer(self):
for num, json_file in enumerate(self.xml):
# 转换进度输出
sys.stdout.write('\r>> Converting image %d/%d' % (
num + 1, len(self.xml)))
sys.stdout.flush()
self.json_file = json_file
# print("self.json", self.json_file)
self.num = num
# print(self.num)
path = os.path.dirname(self.json_file)
# print(path)
path = os.path.dirname(path)
# print(path)
# path=os.path.split(self.json_file)[0]
# path=os.path.split(path)[0]
obj_path = glob.glob(os.path.join(path, 'SegmentationObject', '*.png'))
# print(obj_path)
with open(json_file, 'r') as fp:
# print(fp)
flag = 0
for p in fp:
# print(p)
# if 'folder' in p:
# folder =p.split('>')[1].split('<')[0]
f_name = 1
if 'filename' in p:
self.filen_ame = p.split('>')[1].split('<')[0]
# print(self.filen_ame)
f_name = 0
self.path = os.path.join(path, 'SegmentationObject', self.filen_ame.split('.')[0] + '.png')
# if self.path not in obj_path:
# break
if 'width' in p:
self.width = int(p.split('>')[1].split('<')[0])
# print(self.width)
if 'height' in p:
self.height = int(p.split('>')[1].split('<')[0])
self.images.append(self.image())
# print(self.image())
if flag == 1:
self.supercategory = self.ob[0]
if self.supercategory not in self.label:
self.categories.append(self.categorie())
self.label.append(self.supercategory)
# 边界框
x1 = int(self.ob[1])
y1 = int(self.ob[2])
x2 = int(self.ob[3])
y2 = int(self.ob[4])
self.rectangle = [x1, y1, x2, y2]
self.bbox = [x1, y1, x2 - x1, y2 - y1] # COCO 对应格式[x,y,w,h]
self.annotations.append(self.annotation())
self.annID += 1
self.ob = []
flag = 0
elif f_name == 1:
if 'name' in p:
self.ob.append(p.split('>')[1].split('<')[0])
if 'xmin' in p:
self.ob.append(p.split('>')[1].split('<')[0])
if 'ymin' in p:
self.ob.append(p.split('>')[1].split('<')[0])
if 'xmax' in p:
self.ob.append(p.split('>')[1].split('<')[0])
if 'ymax' in p:
self.ob.append(p.split('>')[1].split('<')[0])
flag = 1
'''
if '<object>' in p:
# 类别
print(next(fp))
d = [next(fp).split('>')[1].split('<')[0] for _ in range(7)]
self.supercategory = d[0]
if self.supercategory not in self.label:
self.categories.append(self.categorie())
self.label.append(self.supercategory)
# 边界框
x1 = int(d[-4]);
y1 = int(d[-3]);
x2 = int(d[-2]);
y2 = int(d[-1])
self.rectangle = [x1, y1, x2, y2]
self.bbox = [x1, y1, x2 - x1, y2 - y1] # COCO 对应格式[x,y,w,h]
self.annotations.append(self.annotation())
self.annID += 1
'''
sys.stdout.write('\n')
sys.stdout.flush()
def image(self):
image = {}
image['height'] = self.height
image['width'] = self.width
image['id'] = self.num + 1
image['file_name'] = self.filen_ame
return image
def categorie(self):
categorie = {}
categorie['supercategory'] = self.supercategory
categorie['id'] = len(self.label) + 1 # 0 默认为背景
categorie['name'] = self.supercategory
return categorie
@staticmethod
def change_format(contour):
contour2 = []
length = len(contour)
for i in range(0, length, 2):
contour2.append([contour[i], contour[i + 1]])
return np.asarray(contour2, np.int32)
def annotation(self):
annotation = {}
# annotation['segmentation'] = [self.getsegmentation()]
annotation['segmentation'] = [list(map(float, self.getsegmentation()))]
annotation['iscrowd'] = 0
annotation['image_id'] = self.num + 1
# annotation['bbox'] = list(map(float, self.bbox))
annotation['bbox'] = self.bbox
annotation['category_id'] = self.getcatid(self.supercategory)
annotation['id'] = self.annID
# 计算轮廓面积
# contour = PascalVOC2coco.change_format(annotation['segmentation'][0])
# annotation['area'] = abs(cv2.contourArea(contour,True))
annotation['area'] = self.bbox[2] * self.bbox[3]
return annotation
def getcatid(self, label):
for categorie in self.categories:
if label == categorie['name']:
return categorie['id']
return -1
def getsegmentation(self):
try:
mask_1 = cv2.imread(self.path, 0)
mask = np.zeros_like(mask_1, np.uint8)
rectangle = self.rectangle
mask[rectangle[1]:rectangle[3], rectangle[0]:rectangle[2]] = mask_1[rectangle[1]:rectangle[3],
rectangle[0]:rectangle[2]]
# 计算矩形中点像素值
mean_x = (rectangle[0] + rectangle[2]) // 2
mean_y = (rectangle[1] + rectangle[3]) // 2
end = min((mask.shape[1], int(rectangle[2]) + 1))
start = max((0, int(rectangle[0]) - 1))
flag = True
for i in range(mean_x, end):
x_ = i
y_ = mean_y
pixels = mask_1[y_, x_]
if pixels != 0 and pixels != 220: # 0 对应背景 220对应边界线
mask = (mask == pixels).astype(np.uint8)
flag = False
break
if flag:
for i in range(mean_x, start, -1):
x_ = i
y_ = mean_y
pixels = mask_1[y_, x_]
if pixels != 0 and pixels != 220:
mask = (mask == pixels).astype(np.uint8)
break
self.mask = mask
return self.mask2polygons()
except:
return [0]
def mask2polygons(self):
contours = cv2.findContours(self.mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # 找到轮廓线
bbox =[]
for cont in contours[1]:
[bbox.append(i) for i in list(cont.flatten())]
# map(bbox.append,list(cont.flatten()))
return bbox # list(contours[1][0].flatten())
# '''
def getbbox(self, points):
# img = np.zeros([self.height,self.width],np.uint8)
# cv2.polylines(img, [np.asarray(points)], True, 1, lineType=cv2.LINE_AA) # 画边界线
# cv2.fillPoly(img, [np.asarray(points)], 1) # 画多边形 内部像素值为1
polygons = points
mask = self.polygons_to_mask([self.height, self.width], polygons)
return self.mask2box(mask)
def mask2box(self, mask):
'''从mask反算出其边框
mask:[h,w] 0、1组成的图片
1对应对象,只需计算1对应的行列号(左上角行列号,右下角行列号,就可以算出其边框)
'''
# np.where(mask==1)
index = np.argwhere(mask == 1)
rows = index[:, 0]
clos = index[:, 1]
# 解析左上角行列号
left_top_r = np.min(rows) # y
left_top_c = np.min(clos) # x
# 解析右下角行列号
right_bottom_r = np.max(rows)
right_bottom_c = np.max(clos)
# return [(left_top_r,left_top_c),(right_bottom_r,right_bottom_c)]
# return [(left_top_c, left_top_r), (right_bottom_c, right_bottom_r)]
# return [left_top_c, left_top_r, right_bottom_c, right_bottom_r] # [x1,y1,x2,y2]
return [left_top_c, left_top_r, right_bottom_c - left_top_c,
right_bottom_r - left_top_r] # [x1,y1,w,h] 对应COCO的bbox格式
def polygons_to_mask(self, img_shape, polygons):
mask = np.zeros(img_shape, dtype=np.uint8)
mask = PIL.Image.fromarray(mask)
xy = list(map(tuple, polygons))
PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
mask = np.array(mask, dtype=bool)
return mask
# '''
def data2coco(self):
data_coco = {}
data_coco['images'] = self.images
data_coco['categories'] = self.categories
data_coco['annotations'] = self.annotations
return data_coco
def save_json(self):
self.data_transfer()
self.data_coco = self.data2coco()
# 保存json文件
json.dump(self.data_coco, open(self.save_json_path, 'w'), indent=4) # indent=4 更加美观显示
if __name__=="__main__":
xml_file = glob.glob('./NWPU_VOC/Annotationstest/*.xml')
#xml_file = glob.glob('./NWPU_VOC/Annotationstrain/*.xml')
#xml_file = glob.glob('./NWPU_VOC/Annotations/*.xml')
PascalVOC2coco(xml_file, 'instances_test2017.json')
#PascalVOC2coco(xml_file, 'instances_train2017.json')
#PascalVOC2coco(xml_file, 'instances_val2017.json')